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Theory of charge nucleation in two dimensions
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Thermal nucleation of two-dimensional charges is studied. It is argued that the probabiityhaige pairs
to appear has a simple asymptotics for laljepy=[q(c, 3, )N Z(B,x), whereq(c, 8, 1) is a function of
charge concentratioty inverse temperaturg, and chemical potentigt, andZ(3,x) is the partition function.
We preseng(c,3,u) as a limit value of some functional integral and find an approximate value of this limit.
This provides thermodynamic description of nucleation transition. The probability distribution of charge posi-
tions is studied within the same approximation. The behavior of the probability distribution indicates that for
small charge concentration the transition is of Kosterlitz-Thouless type, i.e., the dipoles nucleated dissociate
and form a neutral plasma, while at larger charge concentration the transition corresponds to nucleation of
dipoles that may remain bounded. A transition with respect to chemical potential is observad; fqf the
charge nucleation is a transition of infinite order, while for u., it becomes a first-order transition.
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[. INTRODUCTION Formula(1.1) implies a possibility of phase transition. To
make this obvious let us consider a simplified situation when
A system of charges is a basic model for explaining vari-Eq. (1.1) is true for all admissible values o, 0<N

ous physical phenomena. We are going to discuss one featureN,,.x, andqg does not depend on The partition function

of such a system: nucleation of two-dimensional charges dug(gB,u) is determined from the condition

to thermal fluctuations. The key ideas in this area belong to

Kosterlitz and Thoules§l]. They argued that below some \max

critical temperature the charges are bound in dipoles. If tem- Nzo pn=1

perature exceeds the critical value dipoles dissolve and form

a neutral plasma. An enormous number of papers has conng is equal to

tributed to studying this transition. We mention here only the

review paperg2-4]. Most investigations follow Kosterlitz Nmax 1-[q(B, ) Nmaxt1

and Thouless and explore the ideas of the renormalization Z(B,,u)=NEo [a(B,u)]N= 1-q(B.2)

group method. In this paper we consider an alternative ap-
%hen the probability oN charge pairs to appear is given by

proach that is based on the direct asymptotic analysis of st
tistical characteristics exploring the presence of a large pay simple relation
rameter, the number of charges. We give some arguments In

favor of the following property of charge systems: the prob-

ability of N charge pairs to appeayy, has a simple asymp- Pn= 1=a(B.m) [a(B,m)]N. (1.2)
totics for largeN: 1-[a(B, p)]Nmaxt?
1 The dependence of probabilitigg, on N changes qualita-
pn==——[q(c,8,x) 1N, (1.1 fively if, in the course of temperature variation, the function
Z(B, ) q(B,u) passes the valug(B,u)=1. Indeed, forq<l,
Nmax>1,

whereq(c, 8, ) is a function of charge concentratiarthe N
area occupied by all charges divided by the specimen)area pn=~(1-q)q

inverse temperatureB, and chemical potentiale, and
Z(B,w) is the partition function. Charge concentration
plays the role of an order parameter of nonequilibrium con-

while for g>1

figurations. Note thaiN appears in two places in the right PN~ q-1 _
hand side of Eq(1.1): in the power and in the charge con- N qNmax—N
centration.

Qualitative graphs opy in two different caseg<1 andq

>1 are shown in Fig. 1. Obviously, fa;<1 charge nucle-
*Electronic address: vberd@eng.wayne.edu ation is impeded while fog>1 a large number of charges
"Electronic address: chau@am.bi.ruhr-uni-bochum.de should be observed. Dependenceqadn ¢ may change the
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B Determining all stationary points of the functional inte-
grand is an open problem, and it remains unclear whether the
stationary point that we took into account leads to the correct
asymptoticgsome discussion on this issue will be given fur-
a<l g>1 then. We therefore view the formula foy(c,,x) as ap-
proximate. We discuss the outcomes of the approximate
theory as if it captured correctly the true features of the
charge system. It should be borne in mind, though, that some
Noax of these features may be the artifacts of the approximation.
Some of our conclusions on the physical nature of the
phenomenon are similar to those obtained previously from
different reasonings(see Refs.[2,5,6] and references

FIG. 1. Qualitative graphs ofpy in two casesq<1l and
q>1.

shape of curves in Fig. 1. A more accurate discussion givewere'ﬁ' , . .
below confirms that there is a charge nucleation transition. N Summary, nucleation of charges is characterized by the
In order to justify formula(1.1) we presenpy as a func- f0||QWIng features.-There is a critical value pf chem|ca-| po-
tional integral. This integral contains a large paraméder tential uc separating two ranges of chemical potentiel
The large parameter appears in the form that suggests usirigier and > ucr, where nucleation of charges is qualita-
Laplace’s method to evaluate the asymptotics of the integrdively different. The range: < u, includes the case of small
asN goes to infinity. In accordance with Laplace’s method,fugacity e’ (note thatu<0). For u< u the nucleation
the leading contribution to the asymptotics is provided by thdransition is a transition of infinite order, i.e., thermodynamic
integrals over vicinities of the stationary points of the inte-potential and all its derivatives with respect to temperature
grand. We use this idea to evaluate the integral and obtain a&re continuous while thermodynamic potential is not an ana-
explicit formula forq(c, 8, ). The computation of the func- lytical function at the transition point. A typical phase dia-
tional integral gives the limit value ¢nZ(B,x)1*™N, which  gram in ,T) plane is shown in Fig.(@). In this figure the
is independent oN. Although this does not prove the exis- horizontal and vertical axes correspond to the dimensionless
tence of the limit off pyZ(3, 1) ]"N asN—, one may ex- temperatureT and the charge concentratien respectively.
pect that this limit exists. In any case, we obtain a lowerThe thin curve is the curve(c,8,u)=1. It separates two

bound for[pyZ(B, 1) ]*N of the form regions. Regionq(c,B,u)<1 corresponds to impeded
charge nucleation, regiog(c,B,u)>1 to massive charge
[PnZ(B. ) TN=T(c, B, 1) (1.3  hucleation. For each temperature one may compute the prob-

ability that charges appear in concentratioffhe probability
with explicitly determined functiorg(c, 3, ). This bound dist_ribution in the €,T) plane is_highly nonunifor_m. In the
enables one to outline the region iB,i) plane where the regionq(c,3,x)>1 the probability has a steep ridge on the
nucleation transition does occur. It remains valid indepencurvec(T) [the thick curve in Fig. @)], ¢ being the average
dently on the validity of Eq(1.1). There is also an upper concentration. Ihe ridge becomes a declining plateau away
bound from the curvec(T). The plateau has a sharp drop at the

curveq(c,B,x#)=1. In the regiom(c,B,u) <1, the average

(o2 JJiN< elthm\2 (1.4 number of charges is finite and remain finite if the size of the
PnZ(B ) 7= c : ' specimen increases. Thus, in thermodynamic limit the aver-
age concentration is zero. Fpr> u, (fugacity is not neces-
which is less informative. sarily smal) the situation changes: the nucleation transition
C C
0.005 0.8 q:l
g=1 impeded charge
o-004 nucleation
impeded charge 5(T) 0.6
0.003 nucleation
0.4
0.002 .
. massive charge
0.001 1ve . charge 0.2 nucleation
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a) b)

FIG. 2. Phase diagram in the,[) plane:(& u<p, (b) >
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becomes a first-order transition. The critical temperaturealong thexs-axis. The position of a dislocation is described
splits in low critical temperaturd&_, and upper critical tem- by a pointr in the (x;,X,)-plane. Dislocations deform the
peratureT, . A typical phase diagram fqe> u, is shown in ~ surrounding crystal lattice and create elastic stresses. The
Fig. 2(b). The thin curve in Fig. () separates the regions of stress tensor has two independent nonzero compowests
impeded and massive charge nucleation. The meaning of ttando,3. The equilibrium equations lead to the existence of a
low critical temperaturél, and the upper critical tempera- Stress functionys so that o13= 9/ Xy, 0p3= —dploxs.
ture T, is seen from the diagram. F<T_, there is a finite Consider first the crystal containing one dislocation posi-
average number of charges in the specimen, which remairfioned at the poinr. The compatibility condition that re-
finite if the specimen size grows. rf>Tc+r the system quires the eX|ste_nce of a dlsplacement f!eld copnectmg the
abounds in charges. Although all concentrations of chargeBerfect and the imperfect lattices, combined with Hooke's
are virtually possible, the most probable is the average cor@W: Yields the equation for the stress function

centrationc(T) shown by the thick line. As in casg 1
< e, If one moves from regiom>1 to regionq<1 the 6Aw= —bés(x—r), (2.9
probability sharply drops at the boundary: 1. This empha-

sizes'a peculiar behavior of the system bem‘égranQT;: whereb is thexz-component of Burgers’ vectoG the shear
the diagram shows that the nucleation of charges is a Cone‘f‘hodulus 5(x) the two dimensional2D) & function, andA
tive phenomenon—folr , <T<T_, the probability of small Laplace’é operator. '
concentrations of charge@ the region beneath the curve  peanote byC the cross section of the crystal by planes

q=1) is much smaller that the probability of a little bit y_— const. If the boundaryC of the regionC is traction-free
higher concentrations of chargésbove the curveg=1). then

Usually, the term “phase diagram” is used for graphs in
the plane “average concentration-temperature.” The average =0 at JC. (2.2
concentration that is, in fact, also the most probable concen-
tration, is in one-to-one correspondence with the chemicarhe density of elastic energy of the crystal ¥)?/2G. The
potential or the fugacity. Therefore phase diagrams are oftetotal elastic energy is given by the integral
shown in the plane “fugacity-temperature.” We use the term
phase diagram also for transitions shown in the plane “order h -
parameter-temperature.” Phase diagrams in the usual sense E= %JC(V‘#) d°x, 23
are presented in Sec. VII.

The nucleation transition may differ from the Kosterlitz- |, being the crystal thickness in tha-direction.
Thouless transition of dipole debonding, because the charges Energy(2.3) is infinite for the solution of Eqs(2.1) and
in the right region may be bound in dipoles. In order 10 5 5 q,e'to divergence at the poirt=r. Thus, a regulariza-
clarify this issue we explicitly found the probability distribu- {jo is needed. Various regularizations are possible. We will

tion of charge positions within the same approximation as forregularize the energy by introducing higher derivatives in
py - It turns out that at low charge concentrations the nucIeEq_ (2.3

ation transition is also the Kosterlitz-Thouless transition, i.e.,

the dipoles nucleated dissociate. At finite concentrations, h

however, the charges may remain bounded if no external E(zp)zﬁf [(V )2+ €2(VV )?]dx
field is applied. €

The paper is organized as follows. In Sec. Il we specify h Ju\2 [ au)2 2y 2
the model. Our approach is outlined in Sec. Ill. We relate this - _j (_‘p) + _lﬂ 2 _lp
to the previously established results on the probability distri- 2GJc| \dxq 29 &x%
bution of energy in Sec. IV. In Sec. V we explain how func- 5
. . . . . 2 2 2
tional integrals appear in our consideration. In Sec. VI the N Y n Y 42 24
asymptotics of these integrals is considered and formulas for IX10X5 &_Xg X. (2.4

g in terms of ¢,8,u) or (c,T,u) are obtained. In Sec. VII
we calculate thermodynamic potential and present phase digne small parameter has the dimension of length and plays
grams. In Sec. VIIl an upper bound for phase diagrams ighe role of an “effective size” of the dislocation core.
obtained. We analyze in Sec. IX the type of transition by \ogification of energy yields modification of Eq2.1)

studying theN-point distribution function. Probability distri- sincey must be the minimizer of the energy functional
bution in (c,T) plane is derived in Sec. X. This is followed

by Appendixes with auxiliary explanations. [(4)=E()—hby(r). (2.5

The minimum is sought over all smooth functiofibeying
Il. ENERGY the boundary conditiofi2.2). There is an additional bound-

To specify the physical model we choose, following Ko- @ry condition forys due to the dependence of the energy on
sterlitz and Thouless, screw dislocations in a crystal a&ligher derivatives, but we do not need its explicit form. The
“charges.” Let Burgers’ vectors of dislocations be directed minimizer ¢ satisfies the equation
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1o, dislocation position. We denote it I8s. Thus, the total en-
G (AY— €A% =—Dbd(x—T1). ergy of a crystal containing one dislocation is
The minimum value of the functiondl ¢) is equal to the H=E+eo.

negative energy The relation betweer,, €, and the dislocation core energy

in the limit e—~0 is established in Appendix B.
Let the crystal contaiiN, dislocations with Burgers’ vec-
tor b andN, dislocations with Burgers’ vector b. The dis-
The relations of statistical mechanics contain the productocations are positioned at the poimts=(ry , . .. ,rﬁl) and
— BE. It is therefore convenient to rewrite the variational r~=(ry,...fy). Then
problem in terms of this product. It follows from Eq2.4), 2

min ()= —E(). (2.6)
ye(2.2)

(2.5), and 2.6 that 1
gh — BHN(r*,r 7 )=min E(Au,u)—(l,u) —(N1+N,y)eys,
~BE= min | o5 (A= phbir) | (2 - (212
where where
Ny Np
A= | (Vo ETVRI 29 “*”ZJE( 2 -2 ““a>)- (212

In order to explicitly perform further computations we e focus mostly on the case of neutral systeis:=N,
will use the periodic boundary conditions instead of the=N. with
traction-free boundary conditions. We expect that such a re-
placement will not change the results qualitatively. So, in
what follows C is a square of the size, |x;|<a/2, |x,|
<a/2, andP is the subspace of functions that are double
periodic and having double periodic first- and second-ordeFor neutral systems the constraif#.10 can be dropped
partial derivatives. It is convenient to change the unknowrwithout losing well posedness of the variational problem,
function ¢—u: = G/hBu. Then the variational problem because the linear pa.13 of the functional is also invari-
takes the form ant under shifts ofu by a constant. Nevertheless, we will
keep this constraint to maintain the nondegeneracy of the
quadratic functional Au,u).

The variational principle for energy, besides its key role in
the functional integral formulation of the problem to be con-
where 3, is the dimensionless inverse temperatug, sidered further, gives important qualitative information about
= BGb?h. the system. We mention here a few useful facts. First, for

Variational problem(2.9), in contrast to Eq(2.7), requires ~ £€0€o,
an additional constraint. The quadratic function&lu(u) is
invariant with respect to shifts of functiom by a constant, BHN=0, (2.1
while the linear functional/, u(r) is not. The periodic
boundary conditions, in contrast to the boundary conditio
(2.2), do not eliminate such shifts. Therefore, in order to _ _
have a well-posed variational problem with the energy func- AHN= = (N1 Nz)eoB. (219
tional bounded below, we have to impose an additional con ;
straint eliminating the shifts. We put fnequality (2.14 follows from Eg. (2.11

N
<|,u>=@gl[u<r;>—u<r;>]. (213

1
(Au,u)— /B, u(r) |, (2.9

— BE=min >

ueP

nand for nonzera,,

if we chooseu
=0 as a trial function. Note that the self-energies of charges
are included irHy, otherwise Eq(2.14) does not hold. Sec-
(u)= if ud2x=0. (2.10 ond, if one increases, — BH) increases also since the qua-
a?lc dratic form (Au,u) grows. Third, if one change the model by
adding the termxfu?d®x into the quadratic functional
Variational problem(2.9) with the additional constraint (Au,u), —BHy increasegfor k>0) and grows monotoni-
(2.10 is well posed. cally with « since the functional to be minimized increases.
EnergyE is the sum of the elastic energy of the lattice Fourth, — B8Hy found for the periodic boundary conditions
surrounding the dislocation plus the energy of the dislocation- gH |, does not exceed BHy found for the traction-free
core found within the regularizatioi2.4). The latter can dif- boundary conditions- BH|y. if € is small:
fer from the true energy of the dislocation core. The correc-
tion of the energy is a constant that does not depend on the — BHN|pe=<— BHnltc - (2.19
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Indeed, ife is small, one may change in E@Q.11) the setP

of periodic functions with periodic derivatives by the wider
set P, of periodic functions: this causes the reduction in
— BHy of the ordero(e). Then, choosing as a trial function
in the variational problem o, the solution of the varia-

tional problem for traction-free boundary condition and ne-

glecting theo(e€) correction, one obtains E¢2.16).

IIl. NUCLEATION CRITERION

Consider a crystal placed in a heat bath at a given tem-
perature. Suppose that only neutral systems of dislocation
may appear due to thermal fluctuations. The probability of q

set of N dislocation pairs to appear at the positions

(ri,ry),...,(ry,ry) is assumed to be grand canonical:
1 B -
+ =y —BHN(r T r7)

fn(ror=- (D2 © : (3.1

where uq is a parameter. The partition functighis deter-
mined by the normalization condition.

We redefine energy and paramejey by including the
additive term of energy- 2NBeg in 2NBw1. Then Eq.(3.1)
takes the form

1 e2NBr

__ —BHN(r )
Z (Nn2© |

fu(ro,ro)

(3.2

where the energidy is determined by the variational prob-
lem

—BHN(r 1)
1 N
=min 5 (Auu) = VB, 2 [u(ry)—u(r)lf, (33
ueP a=

andﬂzﬂl_eo.

PHYSICAL REVIEW B6, 026129 (2002

1

2B 29

p:
The normalization conditiorisﬂaoX py=1 yields the value of
the partition function

max

N
2</s,m=NE

=0+ -

EZNBM

S AN ),
(N!)

(3.7

S Vectorsr, ,r, run over a piece of a 2D discrete lattice
enclosed in the box. The lattice spacing is identified with
he magnitude of Burgers’ vectdr. States with coinciding
positions of a positive and a negative dislocation are not
allowed since this yields an annihilation of two dislocations;
such states have been taken into account in the sumNvith
—1 dislocation pairs. The coincidence of dislocations of the
same sign is possible: this corresponds to a dislocation with
a larger Burgers’ vector. Such states, however, should carry
the factor that differs from 1K!)2. To avoid the latter com-
plication we assume that dislocations with Burgers’ vectors
of a magnitude larger thalm do not appear.

Let us represenpy in the form

1
pN:Z(BuU/) (qN)N1 (38)
where
1 L 1\
W= 2 e (3.9

We argue that, for larg8l, qy depends omN in the thermo-
dynamic limit only through the dislocation concentration
=2Nb?/a%. More precisely, lefN and a tend to infinity in

such a way that remains constant. Theyy tends to some

The grand canonical distribution describes an equilibriundimit value g that depends on concentratieninverse tem-
exchange of particles of a small system embedded in a largeeratureg, and chemical potentiak:

bath. In that case, parametgr has the sense of chemical
potential of the bath. We will also call chemical potential

a=q(c,B,u).

though the physical situation under consideration is quite

different. The physical meaning ¢f is discussed in Appen-
dix A.

Possible values dil range from zero to some maximum
possible number of dislocation pails;,.x. The probability
that there aréN dislocation pairs in the crystal is

1 e?NBr

_ efﬁHN(rJ’,r_).
PN=Z(8.0) (N2

(3.9
By definition,Hy=0 for N=0. Therefore, the probability
that there are no dislocations in the crystal is

1

Z(B,um)

The probability that dislocations do appear is obviously

Po= (3.5

The values of parameters for which

q(c,B,u)=1

are critical in the following sense: If, for soneeand a given
B, a(c,B,u)>1, then the sum

Nmax
Z<ﬁ,m=N§0 (N (3.10

contains many big terms and is very large. Therefore, the
probability (3.6) that dislocations do appear is about unity. In

contrary, if, at a giverg, q(c,8,x#)<q, <1 for all c, then

the sum(3.10 does not exceed a constant independent on
Nmax: and there is a finite probability that dislocations do not
appear.
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Our analysis is based on the replacement of the sum ident vectors homogeneously distributed ov@&r Then

Eq. (3.9 by the integral Hy(r *,r ) is the random function depending on these ran-
N dom vectors. The integral in E¢3.13 is the mathematical
opal 1 B ) d’ry  d?ry expectation of exp- BHN(r.r )]
Qn=e"* 2J f e N A , Let f(E) be the probability density function of the en-
(NhH=Jc c b b
ergyHy. Then
(3.11

. + _ . B d2r+ d2r—
where each variable; , ... ry runs over the entire square 3 :J j N e MLE N
C. Allowing each variabler; , ... ry to run overC we N e c a? a2
neglect the condition that dislocation positions do not coin-
cide. The error caused by this is small if the concentration :J e PEf (E)dE. (4.1)
is small. In the next two sections we compute the integral in

Eq. (3.11 approximately and find out that the right hand side
of Eqg. (3.11) does not depend oN. In this indirect way, we The energyHy possesses a special feature: according to
support the assumption that it has a limithsso. We use Eg. (2.1)) it is the negative minimum value of a quadratic
the formula obtained for the limit to discuss the dislocationfunctional. The probability density function of minimum val-
nucleation for allc, including finite c. The conclusions for ues of random quadratic functionals of this type was ob-
finite ¢ require further investigation because the expressiotiained in Ref[7]. It is easy to see that, after removing self-
(3.12) is no longer valid in this case. energies, the energy variance is of the ordér Thus, one
Note an essential feature of the expresqi®il): it con-  may expect that the ratibly /N has a limit probability dis-
tains big factorsb™2. These factors stem from the “space tribution. Indeed, it was shown that the probability distribu-
discretization.” In a sense, the space quantuis analogous tion function of the ratioh=Hy/N, gy(h), after a self-
to the de Broglie lengtlicompare with the expression for the energy shift, has a limity..(h), asN—o, and an analytical
partition function in Ref[4]). To appreciate the contribution form of g..(h) was obtained. Functiog..(h) was investi-
of the factorsb™? let us write Eq.(3.11) in the form gated further in Ref[8] for the case of two-dimensional
charges in a periodic box, it was found that the analytical
(a2/by)2n ™ formula for g..(h) is in good agreement with the numerical
T a2 YN[ (3.12 simulations conducted in R€f9]. We consider in this paper
(N!) >~ . .
an approximation of the integrdl,, which corresponds to
where replacing the functionfy(E) in Eq. (4.1) by g..(NE). In
order to better understand the error introduced by such
. _durT d2r: change we repeat the argument from Ré&.in the follow-
JN:f ...jefﬂHN(r o B N
c c a?

gn= e2Bu

;- (313 ing section and reduce the evaluationJgf to studying the
asymptotics inN of some functional integral.

The ratioa?/b? is equal to the number of atoné, in the

: - V. FUNCTIONAL INTEGRAL
areaC. The numbem! can be approximated by Stirling’s UNCTIO ¢

formula: InN!=NIn N—N. Therefore, The idea of representing the partition function as a func-
. tional integral is widely used in statistical physitsee, for
(a“/b%) _ 2N 1 Ny 2N In N+2N _ g2N[L—In(c/2)] example, Refs[10,11)). We will follow it in our treatment
(N1)? ' 7], o o .
(3.14 The starting point is the following identity: for any posi-

tive definite quadratic form/(u,u)m=2irf‘j:1Aij u;u; and lin-
Obviously,c<1 and 1-1In(c/2)>0. Thus, the numbg3.14) ear form QYU)mZEJm:l'jUj'
is very big: the ratio §2/b?)N outweighsN!. The third factor

in Eq. (3.12, Jy, is always less than unity, due t@.14 detA _ .

e AN<1, hencely=<1. QJ e~ (WA L=i(LWmgmy = g~ (1A,
So, in Eq.(3.12 we have a competition of two factors: (2m)

very big number(3.14) and presumably very small number 5.1

Jn - Quantityqy may be larger than unity only due to the big
factor(3.14) that is caused by the “space quantization.” Note
that the elementary estimatg.4) follows immediately from

where detA,, is the determinant of the matrifA;|;

(A1) =312, Aj il Ajj* being the component of the

Egs. (3.12—(3.14 and (2.15. inverse matrix, and®= —1.
Our next goal is to study the integra, . Since
1 1
IV. DISTRIBUTION OF ENERGY min 5 (AU U)m=(1,U)m| = = E(A‘ll,l)m, (5.2

u
The integralJy admits the following probabilistic inter-

pretation. Let us regard; , ... ry as statistically indepen- we can write the identity5.1) in the form
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emu‘“[(1/2)(Au,u)m—(l,u)m] Du that depend ore~a/+\/N. Nevertheless, we proceed ig-
noring this fact and hoping that, due to E§.5), we capture
detA,, . approximately the behavior of the integral. One may say that
= —mJ e” (WAAUIM =10 UngMy, we unbounde andN and, for a fixede, tendsN to infinity.
(2) Then, at a final stage, the link betweermndN is taken into
(5.3 account. More on the “real asymptotics” df; will be said

. o in Sec. VIILI.
Note here that, due to E2.11), — BHy is the minimum From Eq.(5.7)

value of the quadratic functional. Making a finite-

dimensional truncation in the variational probléghll), one d?x 2
f co ’B*U_Z
a

can evaluate the energy with any desirable accuracy. The Q(u)= +

truncated variational problem has the for(6.2) where
(Au,u), and (,u),, are them-dimensional truncations of the
functionals @u,u) and (,u). Therefore

d?x\
fsin ﬁ*u—z) .
c a

The functionalQ(u) is real and does not exceed unity. Thus,
the integral(5.6) converges absolutely. We seek the station-

e BHNGT ) — fim Ml (12) (A0~ (0] ary points ofQ(u). The stationary points obey the equation
me —siny/B, u cosyB, a+cos/B, usinyp, a=0, (6.1)
—lim A /%j o (12)AULW,— i (LW gy where « is a constant depending om Q(u)cos/B, a
moe ¥V (2m)™ = [cos/B, ud®x/a?. Putting Eq.(6.1) in the form
We write this limit symbolically as sin\/ﬁ[u(x) —a]=0, (6.2
o1 [ gy, (s e 558 AR o & pecenis constant fnclon kg e

_ -~ ~finite value of energy Au,u) are continuous. There is only
where the “volume elementDu is specified by the condi- gne continuous function(x) =0, which satisfies Eq¥6.2)

tion and(2.10. Other stationary points existing im-dimensional
truncations tend to infinity in the spad& with the energy
f Due M)A =1 (5.5  horm (Au,u)">asm—oc. Thus, one may expect that=0 is
the only stationary point that should be taken into account.
Integrating Eq.(5.4) overr*,r~ we have In the vicinity of the pointu=0 the functionalQ(u) takes
o ' the form
d’r]  d?ry
_ = (2/2)(Au,u)—i(l,u 1 N
JN—Je aRGeam oDy 2 a2 Q(u)=1—'z—:jcu2d2x (6.3

This formula can be simplified due to a special form of the

and, within the same approximation,
functional (,u) (2.13. We obviously have PP

B
JN: f Due—(1/2)(Au,u)[Q(u)]N In Q(LI) =— a—;fcuzdzx.
_ [ pye-w2@uw+NmW (5.6 Note that the approximation of the fgnctior@(u) by for-
' : mula(6.3) may also be viewed as a high temperature expan-
sion.
where In the approximatior(6.3)
R o d?r d?r! 1
Q(U)=f f e WAL — —— (5.7 JN=J Du exp‘ ——J [Vu2+ e2(VVu)2]dx
cle a? a 2)c
The integraldy depends on the large paramehtérWe need BN _—
to find its asymptotics abl— . T2 LU dox . (6.4
VI. ASYMPTOTICS OF THE FUNCTIONAL INTEGRAL Computation of this e|ementary integra| givéﬁge Ap-
The integral (5.6) resembles integrals studied by pendix Q
Laplace’s method, since it contains the large paramiter 1
The similarity is, to some extend, misleading: the parameter Iy — ——, (6.5)
N is hidden also in the operatdy and the volume element VO (B, N/272)
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where ®(z) is expressed in terms of the eigenvalues of

energy\,

. Me=KP+EKA, e=2mela.

P, (2=11

’
keZ,

1 4
+ )\—k
(6.6

In this infinite productk runs overZ; that is the 2D square
lattice with unit spacing and with the origk=0 being ex-
cluded.

It is convenient to writed® (z) in the form ®_(2)
=e 2D where

h,(2) 1|<1>() 1Z|1+ 2
[(2)=—zInd (2)=— = n — .
2 2\ k|2 +e? k|
2
(6.7
Combining Eqgs(5.6), (6.5), and(3.14 we get
qN:eZ[l—In(c/Z)]-%—hs(ﬁ*N/27r2)/N+2p,ﬁ. (6.9

In the thermodynamic limit the function, (3, N/272)/N
converges to the functiofsee Appendix D — x(B, p)/4mp,
where

1+

X(Z):rm

0

(6.9

z d
u,
u+u?

andp is the density of dislocation cores=2Ne?/a. Func-

PHYSICAL REVIEW E66, 026129 (2002

C 1
= —In=|— 2
Inq—2(1 In2> 477)\20X(B*C)\ )+t2u, By -
(6.12

Note that, besides, B8, , and u, , the functionq also de-
pends on the parameterof the Hamiltonian as it is clearly
seen from Eq(6.12), but we do not emphasize this in our
notation.

Defining the dimensionless temperatureas T=2x/8,
we obtaing in terms ofc andT,

ATy
T

1 (277)\20)

ng=2 1-In
na= "2 T

477)\2CX

(6.13

VII. THERMODYNAMIC POTENTIAL AND PHASE
DIAGRAMS

The thermodynamic potenti&l is defined by the formula

1
Q(,B,M)z—N—aan. (7.0

As follows from Eg.(3.7), the average dislocation density
can be expressed in terms of the derivative)diB, u):

_ Nmaxop 1 dInZ 108w
c= —_— =— e —
o N.VBN, dp B om
1 0Q ,
__ (Ba M*). (7.2
By Oy

Let us findQ explicitly within the approximation of Sec.
VI. Consider the partition functiof8.10. Since, for largeN,
gn~d, the partition function is finite ifj(c,8,x) <1 for all
c. Therefore, in the limitN,—cc the thermodynamic poten-

tial Q (7.1 is zero andc=0, in this case.
If q(c,B,1)>1 for somec, then we compute the partition
function in the following way. Consider the sum

Nmax

z=2 (g™
N=0

tion x(z) is positive, monotone increasing, and concave for

realz>0. At the end points functioy(z) has the following
asymptotic behavior

x(z2)~—zInz+z as z—0; X(z)~7r\/2 as z—o,

(6.10

(see Appendix I The graph ofy(z) for real positivez is
plotted in Fig. 3.
From Eq.(6.8)

q:ez[l_ln(C/z)]_1/47TPX(B*P)+2P«B_

(6.1

To present this result in the dimensionless form we introduce

the dimensionless chemical potential, by the relation
Wy By =ppB, i.e., u, =ulGb?h, and the dimensionless dis-
location core radiug = e/b, so thatp=c\2. Thus, finally,

SinceZ is very large, and there is only a finite number of
terms for whichqy differ from q considerably, we may write

o

The last sum may be approximated by the integral

max

N
Z~N, >,
N

N1
~ N,

2N
N—a’ﬂ’“)

szax (ZN )Nl ijan{ (ZN )NdN
“o q Na,ﬂ’M NaN 0 q Na,B,M Na
1 (cmad?
-5 tate. w1
2Jo
Finally,
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Q(c,T,-10) =
0.001
C  g10°®
0.00020. - 0.001 FIG. 4. (& Q(c,T,u,) as
-0.001 3 610°° function ofc for =1, u, = —10;
-0.002 2 Py curve 1:T=1/4, curve 2:T=6.5,
0003 410 curve 3:T=7. (b) Average dislo-
_0‘004 2107° cation densityc as function of T
) for A\=1, u, = —10.
-0.005!7 G 5 3 < 7
a) b}
N, [ Cmax2 2
S _aJ max e(L2NacIna(c,8.4) | . (7.3 0C.T.)=q 1 InE— 1 2m\°C +27T,LL* .
2 Jo o 2 gmzcXl T T

(7.7

Let c tends to zero. Keeping only the leading terms in Eq.
(7.7 asc—0 in accordance with Eq6.10, we have

Denote by()(c,B,u) the function

1
Q(C,E,M)ZEC"]Q(C,B,,LL). (74)

1
Q(c,T,u)= (——1)c|nc (7.8
Let us show that thermodynamic potential is given by the

formula We see that there is a critical value of temperafCige= 1/4,
where the behavior of the system changes:TetT.,, the
_Q('B'“):mfm(c'ﬁ*“)' (7.9 function Q(c,T,x) has a local maximum at=0, for T

>T,, its local maximum is attained at some positive value of

According to this formula, functiof)(c, 3, ) plays the role ¢ Whether function((c, T, ) has a global maximum at

of nonequilibrium thermodynamic potential, whiteis an =0 or atc>0 depends on the value of chemical potential

order parameter. Mi . Some conclusion can be drawn from the analysis of
Assume that, for each, u, the functionQ)(c,8,u) of cis  functionQ(c,T,u) for smallc and small temperature devia-

smooth and bounded aboj#ne bound(1.4) is too rough to tions from the critical value. Expanding with respect to

guarantee that Denote the point where the maximum value small c and T'=(T—T)/T and keeping only the leading

of Q(c, 3, 1) is reached bg. Consider first the case thais  terms, we have

an internal point of the integration interval. At this point B , _ ,

d0/dc=0. Assume tha?Q/dc?+0. Obviously, 92Q/c? Qe Tp)=c[=T'Inc+8m(p, —pe) +AT'], (7.9

< 0. The asymptotics oZ can be found from Eq(7.3 by

where =—In(16m\?)/87, and A is some coefficient
Laplace’s method: Mer (16m\°) /81

whose value is not essential for what follows. LEt be

s _12 much smaller thanu, — u.,. Equatingd€)/dc to zero we

d Q(Caﬁiﬂ)l have
aNg——————| .

d%c

7= % e (U2NLQ(B,w)| —

(7.6 —T'Inc+8m(m, — pe)=0. (7.10
This equation has a solution that does not exceed unity

Formula(7.5) follows from Eqgs.(7.6) and (7.1). Note also . L
ula (7.9 W as.(7.6 (7.1 only if w, <pu. The solution is

that the pointc coincides with the average dislocation den-

sity c. c=eB7(kx ~re) T, (7.1
Formula(7.5) holds true also it=0 andQ(0,8,x) #0:

we still have the exponential asymptotics of the tyfes) For A\=1 the critical value of chemical potential is equal to

(with a different factoy. The last option to consider s=0  Mcr™ —0.1559. . .
andQ(0,8, 1) =0. In this case the asymptotics dthanges: Numerical analysis of functiofi.7) shows that the above

Z grows slower than any exponential functionsf [under mentioned features established for small values ahd T’
some physically nonrestrictive assumptions satisfied, in pa/2'®: In fact, the global features of the thermodynamic poten-
ticular, for functionq(c, 8, ) of Eq. (6.12]. Therefore func- tial. The global features are illustrated in Figs. 4-5. Figure

; : _ 4(a) shows the dependence 6i(c,T,u,) on c for u
tion (7.1) is zero. On the other hand, mai(c,8,u)=0 and ™ * *
again Eq.(7.5) is valid. =—10 andT=T,=1/4, T=6.5, T=7. Figure 4b) shows

Consider now the nonequilibrium thermodynamic poten-the corresponding dependencecwbn T. Note that all de-
tial within the approximatior(6.12 in terms of temperature rivatives of funct|onc(T) vanish afT=T,. Thermodynamic
that is defined a3 =2/, potentialQ)(T,u, ) is continuous af =T, along with all its
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Q (C/ T/ 0) ccr _

J \4 o c
.6\N\l 0.8 FIG. 5. (@ Q(c,T,u,) as
-0.05 3 function of ¢ for A\=1, u, =0;
0.6 curve 1: T=0.02, curve 2:T
-0.1 =0.024, curve 3:T=0.02757,
o.15 2 0-4 curve 4: T=0.029. (b) Average
0.2 dislocation densityc as function

-0.2 of Tfor =1, u,=0
1 0.01 0.0z 0.03 0.04 T
a) b)

derivatives with respect td. Indeed, from Eqgs(7.9) and  The above mentioned point obeys this equation since at this
(7.1, O=AT exd8m(u, —ue)/T'] and all derivatives of pointg=1 anddqg/dc=0. This fact along with the property
Q with respect tol vanishes aff =T,. Thus, the transition of the curveq=1, which will be discussed in Sec. X, make

is of infinite order. the graphs of these curves quite instructive. These curves are
The situation changes ji becomes greater tham,,. A~ shown in Fig. 7 for various values of parameters.
typical graph is shown in Fig.(8) for the caseu, =0, \ Figure fa) illustrates the dependence of the curye 1

=1. At low temperaturegcurve 3 Q(c,,u) is monotoni-  ON parametek. Increase ok corresponds to increase of the
cally decreasing, it has the only maximum at the end poinflislocation core sizee. As was mentioned in Sec. I,
c=0. As temperature rises a new local maximum appears SHn grows if e increases. Thusly and, henceq, must

(curve 2, but it is still smaller than that at the end point grow. This corresponds to motion of the cungs 1 to the

=0, and the average dislocation density is still equal to zero€ft in Fig. 7(a). Accordingly, the low critical temperaturk,

: decreases as increases.
The value ofQ)(c,8,u) at the new maximum becomes equal i
to the value at the end poiot=0 when temperature reaches Decrease of, yields decrease af. Therefore the curves

" - ! . g=1 move to the right as shown in Fig(bj. Accordingly,
the low critical valueT; (curve 3. ForT>T,, the maximum the low critical temperature grows. The influenceof is

is greater than 0 and attained at a paintc, (curve 4. At especially important for low temperature since the last term
the instant when temperature passes the phintthe aver- in Eq. (6.13 becomes dominant a6—0. The level curve
age dislocation density jumps from zerodg. At T=T,, g=1 is plotted in Fig. 2b) for A\=1, u, = —0.01. One can
thermodynamic potential has a jump of the derivative withsee that the critical temperatufle,~0.0622 is larger than
respect tqu, , and the transition is the first-order phase tran-that obtained in the case, =0. At the same time, the cor-
sition. The corresponding graph of the average dislocatiofiesponding dislocation density,~0.19 is lower than that
density as function oT is shown in Fig. &a). The transition for u, =0, for which c,~0.626. Asu, — u from above

takes place af = T, ~0.027 57, at whicft jumps from zero  (#c~—0.1559 fora=1) the low critical temperaturd.,
to 0.626. approached ,, while the critical dislocation density,, ap-

: roaches zerfsee Fig. 70)].

The closer the VQILE qf, to e, the smaller the jump of P Figure 8a) gshows tghe'(p)gase diagram in tHE 2, )-plane.
average concentration. For A=1, u, =—0.01 the plot of 1 o critical temperatur@, increases monotonically as
¢(T) is shown in Fig. 63 [the jump inc(T) is ~0.19 and 4, decreases down to the critical valye,, from there on
T,~0.0622. This plot corresponds to the phase diagramT_ =T, =1/4. The corresponding phase diagram in the
shown in Fig. 1b). Forn=1,, = —0.02 the plot ofc(T) is  (T,2)-plane, withz=e?"*+ 'T being the fugacity, is shown in
shown in Fig. 6b). Fig. 8(b).

The point €,T) where the jump occurs coincides with
the point on the curveg(c,T,u)=1 in the (,T)-plane
where it has the vertical tangent line. Indeed, differentiating In this section we construct a lower bound for the function
function (7.4) with respect toc we have Irg+cq tag/ac=0. g(c,T,u), i.e., a functiorﬁ(c,T,,u) such that

VIIl. UPPER BOUND FOR PHASE DIAGRAMS

& c
0.8 0.8
0.6 0.6 FIG. 6. Average dislocation
0.4 0.4 densityc as function of T for A
’ =1 and (@ u,=-0.01, (b) u,
0.2 0.2 =-0.02.
0.0250.050.075 0.1 0.1250.15 T 0.05 0.1 0.15 0.2 0.25 T
a) b)
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[+
3
0.008 1
0.006
2
0.004
0.002 3

T
25 0,05 0.1

FIG. 7. Level curvegi=1 for differenth and u, .

c [s]
312 1
2
0.8 0.8 1
0.6 0.6
0.4 0.4
0.2 0.2
0.05 0.1 0.15 0.2 0.
a)

0.2350.24 0.2450.25 0.255 T

b) <)

(@ w=0; curve 1:Ax=0.5, curve 2A=1, curve 3:A=2. (b) A\=1; curve L:u,

=-0.01, curve 2:u, =—0.02, curve 3:u, =—0.05.(c) A\=1 (um,~—0.1559); curve 1u, =—0.14, curve 2:u, =—0.15, curve 3:

w,=—0.155.

q(c,T,u)<q(c,T,u). (8.0

If g>1, theng>1, and the nucleation transition occurs.

Since the level curvej=1 separates thec(T)-plane into

two regions, that on the right correspondingyte 1 and that

on the left corresponding to<1, the level curveq=1

should lie in the right region. Thug,= 1 outlines the region

where massive nucleation of charges does occur.
Consider the integraly

Jsz e~ (WAL Q(u)NDu. (8.2
We are going to show that
Jn=Jy=const/NeNSeAx), (8.3

whereS(c,B,.) is determined by the variational problem

-0.04 —

massive charge
nucleation

0.08 —|

A impeded charge
nucleation
042 —

096 —

a)

S(c,B,)= maxmin/ In(1—7)+zy
0<7y<10=<z
- c\%z) |, 8.4
4770)\2)((3* ) (8.4

and x(z) is the function(6.9). From Egs.(8.3 and (3.12),
for largeN, an estimate follows

C
qN>2( 1—In§ +S(C,By) T2y By -

We start with the derivation of Eq8.3).
Denote byg(&) the function

g): J’ e_(llz)(A”’“)Du, (85)
Q(u)=¢

whereQ(u) is the functional(5.7). The functionalQ(u) is
positive and does not exceed unity since

massive charge
nucleation

impeded charge
“nucleation

o \ \ \ \ T

0 0.05 0.1 0.15 0.2 0.25

FIG. 8. Phase diagram far=1 in (a) (T,u,) plane,(b) (T,z) plane, withz being fugacity.
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d2x\ d2x\
_ “a . b G(g):j e—(1/2)(Au,u)Du_J e—(1/2)(Au,u)Du
Q(u) (JCCOS B,u a2> + J;SH] B.u az) Q(u)=1 Q(u)=¢
— j e—(1/2)(Au,u)Du_ (87)
Q(u)=¢
\f f cogyB,u _ _ _ _
ca?lc a’ It is convenient to introduce the variabke=1—¢ and
write Egs.(8.6) and(8.7) in the form
. f d?x f 2 d?x L )
— | si u—-=1.
ca’lc B a2 JNZNfo(l—n)NflG(l—ﬂ)dn,
Therefore,g(§)=0. if £<0, g(&)=11if &=1, andg(g) in- G(1- n):f e~ (DAUUDY
creases monotonically as grows from 0 to 1. Obviously R

_ 1N ; ;
In=Jo¢7dg(¢). Integrating by parts we obtain whereR is the following regionR={u|1—Q(u)= »}. Con-

sider also the region
B
—; U2d2X$7] .
acJc

1
‘]N:Nf &Ng(1)—g(é)]dé¢. (8.6) = [
0 R=ju
The functionG(&)=g(1)—g(&) can be written as The regionR is wider than the regioR. Indeed,

—Q(u)=1- ( —ZX)

X
:(1 cos B, u —2)

d2x\
SII"I ,8*U¥)
d?x _ d2x\
,B*U? — JSII’] ﬁ*U¥
cos B,u 22 cos B.u 22 sinyB,u 22
d2x\? d?x\?
22( cos B.u ) ( cos B Uu— ) —(fsin ,B*u—z)
a® a
2
<2f (1—co&/ﬁ*u)d—2)(
c a

<'B—*f u?d?x.
C

aZ

In the last inequality we took into account that-tosx - 1
2 fucE 7 =N (1=pht e (2ALIDUdy
<x72. Therefore, ifue R thenueR and, henceRCR. N o B, 1a%f cu2d?x< 7

Thus,G(1— 7)=G(7)=Jre M2AuIDY and
dz
Nf(l " 5 Izex;{zn f d=x

~ 1 ~
‘JNBJNENJ’ (1= N 1G(n)dn. 1
0
—§(Au,U)

Dudny.

The asymptotics of the integrﬁl,\, asN—o can be found
explicitly. To this end we pufy in the form Here we used a presentation of the step functitfit)
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c c ° T 1 T"
02 04
1 2
0.8 0.8 1 2
0.6 *7
0.6
1 2
0.4 0.4
D2 —
0.2 \ 0.2
T
0.05 0.1 0.15 0.2 0.25 6.05 0.1 0.15 0.2 0.75 p
a) b) c)

FIG. 9. Lower bound for functiom at A\=1. (a) u, =0; curve 1:q=1, curve 2:q=1. (b) u, =—0.01; curve 1:g=1, curve 2:q
=1. (c) Upper bound for phase diagram: curvésblid line), phase diagram of approximate theory from Fig. 8; curveash ling: exact
upper bound.

= [eFdZ2miz. The integral is taken over the lif@—ix,a  m=((r; —r;)?), being a simple characteristic, does not
+ie] in the complexz plane,a>0. Changingz to Nzwe  serve as an indicator of the dipole-plasma transition because

obtain mis always of the ordea®. Indeed, in the plasma stat®,is
obviously of the ordem?; in the dipole stater; may be
5 :NJ' dzdneN[|n(lﬂ)+Zﬂ]f ox —E(Au 0) bound with, sayy, andr; with rj while r; andr; run
N 2miz p 2 ' over the whole specimen, therefore, agair a%. One needs
a more subtle characteristics. As such we consider the prob-
zB, N _ ability density of position of the first negative dislocation
T2 LU d*x|Du. under the condition that there alkedislocation pairs in the
specimen and the positions of all positive dislocations
+ + : ; ; -
As shown in Appendix C, the integral ové is equal to "1 ---fn are+f|xed. Denote this function of, by
[q)s(zﬂ* N/2772)]71/2. The function q)g(zﬂ*leﬂ'z) con- fN(r£|rl+, e ,I’,\Jlr). In the dlpole Stat'e the functlpn
verges in the thermodynamic limit to (8, p2)/2mp],  n(rilri, ...,ry) has strong local maxima at the points
where x(z) is given by Eq.(6.9). Thus, r{,...ry. Otherwise the system is in the plasma state.
According to Eq.(3.1)
- 1 fa+i=dzdy
= N[IN(1— ) +zn—(1/4mp) x(pB4 2)] _
N = - e i)
The asymptotics of this integral is given by E¢8.3 and = iJ @ BHN(T iy L r,i)erZ*. —d?ry .
(8.4). Zy
Denote byq(c,T,u,) the function 9.1

Note that all factors that do not depend pp can be in-
cluded in the normalizing factaZy . In particular, one can
use formula(3.3) for — BHy. Using Eqs(2.11) and(5.3) we
The level curvesj=1 are shown in Figs.(@,b for various ~ Write Eq.(9.1) as a functional integral
values of parameters.

Figure 9c) shows the upper bound of the phase diagram

in the plane T,u, ). The dash line correspondsTq, versus
My Whereﬁ'c’r is the critical temperature determined from

N
the curveq=1. The solid line on this figure corresponds to —iVB, 2 u(r))
our approximate theory. a=1

~ C
q(C,T,,u*)=2( 1—In§ +S(c,2m/T)+ 4w, IT.

1
fu(rolrs, ... ,r,:)=f ex;{—z(Au,u)HJEu(r;)

o N=1py
IX. DIPOLE STATE VERSUS PLASMA STATE X J e w/ﬁ*”(x)d2x> 7= 9.2
C

N

The phase transition described above corresponds to a
nucleation transition if the temperature is high enough for thdntegration with respect ta is taken over the subspace ex-
dislocations to appear. Now we are going to examindracted by the constrain®.10. SinceN is large, we may
whether the positive and negative dislocations are bound ireplace the powerN—1) in Eq.(9.2) by N and write Eq.
dipoles or form a neutral plasma. Unfortunately, the moment9.2) in the form
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_ 1 _ iBoulr, N
fN(rllrIv ___'rﬁ):Z_Nfe (1/2)(Au,u)+l\,ﬂ*u(rl)+NS(U)'DU' AG_EZAZG_E*—ZG:_(S(X—X,). (9.7)
9.3 a
where Obviously,G(x,x") is a function of the differencg—x’. At
x=X" the functionG is finite; denote its value b,.
i B. N ' We have
s(u)=——y 2 (r )+Infce'v@“(x)d2x. (9.4)

N
minl=—'8—*[ > G(rl ) +G(ry )
Note that functiona(9.4) is invariant with respect to shifts of 2 |ab=1
u by a constant.

Let the positive charges be distributed more or less homo- _22 G(r
geneously andu(x) be a smooth function. Then &’
SN u(rf)IN=fcu(x)d?x/a?, and the first term in Eq.

(9.4) vanishes due to Eq2.10. The only smooth stationary SinceG(r; ,r;)=Gq is a constant, the only terms depend-
point of Eq.(9.4) is u=0. This suggests an approximation of ing onr; are=,G(r},r;)=2,G(r; —r.). Keeping only

1) |- 9.9

the second term in Eq9.4) by the functional these terms and redefinirgy, accordingly, we obtain
| i\/mudZ ~| d2 _ B_* 2d2 . + N _ +
nj.e x=In| | d*x= | utdx fu(ro|rs, ... .ry)=const ex ﬁ*agl G(ry—r)|.
9.9
~ ﬁ_*f u2d2X
2a2lc ' So the dipole-plasma transition is determined by the behav-

ior of the solution of Eq(9.7). Solution of Eq(9.7) in scaled
Here we dropped the constaniafnredefiningZ,y. Finally,  coordinates x/e depends only on the parametex
we put =4m\%c/T. For finite x the solution of Eq(9.7) is concen-
trated around the point’. Thus, the negative charge is
3* By located in the vicinity of a positive charge with overwhelm-
s(u)=— 2 u(r a)——f u?d*. (9.5  ing probability. For smalk the solution of Eq(9.7) spreads
¢ over the cell, and the system is in the plasma state. Stnall
corresponds to small concentrations. This suggests that the
nucleation transition at small concentrations is accompanied
by dipole debonding while the dipoles nucleated at high con-

One can regard Ed9.5 as the first terms of the high tem-
perature(small 8,) expansion ofs. In this approximation

R v .
fn(rolry, ... ry) can be found explicitly. Indeed, centrations may remain bounded.
Znf o)
vl N X. PROBABILITY DISTRIBUTION
zf e~ (WAL +iIB,u(r ) +NS(Upy In this section we consider some features of probability
distributionpy .
— gMiny urglry .., ) (9.6) First, let temperature and chemical potential be such that
’ ' g(c,B,u)<1 for all c. Then the sum
1 N
l(u,r{|r{, ... rg)==(Au,u) max
s M2 = ()" (10.)
N=0
B*N 242 \/_ —
o) doX+ VB u(ry) is finite in thermodynamic limit because its tail is approxi-
mated by the converging seriggN. In thermodynamic limit
N we may put in Eq(10.1), Ny,.=2. The average number of
—VBx 21 u(ry). charges
&
Here we use again E¢.3). Note that, due to the presence of N= 2 N

the termg, N(u?)/2 that is positive definite, the functional

is bounded below iP. Therefore the constraifu)=0 can

be removed in the minimization problert®.6), for this s finite, since for largeN the terms of the sum decay expo-

changes miih by a constant that can be included in the nor-nentially asNg"/Z=NeN'""9Z, Ing<0. We conclude that in

malizing factor. the zone of “impeded charge nucleation” the average num-
Denote byG(x,x") the periodic solution of the equation ber of charges does not depend on the specimen size.
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If function q(c,B,u)>1 for somec, 3, andu, the situa- note byx; the position of atoms of a 2D crystal, wherre

tion changes drastically. In this case, in accordance with Eg=1, ... N,, N, is the total number of atoms. Let
(7.6), H(Xq, ... ’XNa) be the potential energy of the atom configu-
7 — conste~ (V2Na(B.) (10.2 ration xq, . .. XN, The probability of atoms to occupy the
positions Xq, ... XN, is assumed to be Gibbsian

is exponentially large sinc€(B,u)<0. The average con- f(x,, ... ,xNa)=e‘ﬁH(Xl ----- *NJ/Zo. Various equilibrium

centrationc is finite, and the average number of chargesstates of the crystal correspond to local minima of function
grows proportionally to the specimen size. In this case it isH. There are local equilibrium states that correspond to the
better to regard probabilitpy as a function oft, p=p(c).  presence of dislocations in the crystal. TH¢,2dimensional
Probabilityp(c) reaches its maximum at the pomtindeed, configurational space of all possible atom positions can be
for a givenc, N tends to infinity asN,—. Thus, one can Split into subregions that correspond to no dislocations, to
replace in Eq(3.8) gy by g and write the presence of one dislocation positioned at pointtwo
dislocations positioned at points,r,, etc. The probability

_ (1/2)eNg that there is a dislocation at the poin{ is given by the
p(C)=—=— (103 integralf(r,)=fe AH01 - Xn)d2x, - - -d®xy_/Zo, which is
taken over the subregion of the configurational space corre-
From Eqs.(10.3, (10.2, and(7.4) sponding to this dislocation position. Denote this subregion

) by A(ry). Then
p(c)=C0nSteXé§Na{C|n q(c,B,m) f(rl):e*BH(rl)

) (10.4) Xf ie_B[H(Xl ----- XNa)_H(rl)]dle. . .dsz ,
ArpZo a

—maxclinq(c,B,u)]}

Obviously, the maximum value gb(c) is reached at the (A1)

point ¢=c. F_unctlonp(c) decays exponentially away from whereH(r,) is the energy of the crystal containing one dis-

the poi.n.tc=c. i ) location at the point ;. We introduce the parameter; by
Additional drops of functiorp(c) occur at pointc=c, the formula

whereq(c,B,u)=1. Indeed, from Eq(10.4
eﬁ/’“l
Na: Z ’
(A2)

p(c, +Ac) f ie*ﬁ[H(Xl ----- Ny ~Hr)l g2y, - d2x
p(c, —40) A%

1
=exp s N,[(c, +Ac)lng(c, +Ac,S, . .
D{Z al (G« inq(e, B whereZ was defined in Sec. Ill. Moreover, we assume that

for states with two dislocations positioned at pointsr,

1
A= B[H(Xq, ..., XN)—H(1.r)142y ... 42
:eNa(dq/dc*)Ac' fA(rl,rz)Zoe 1 Ny 1:.M2)1d X1 d XNa
We see that probability in the regiap>1 is exponentially e?hm
larger than probability in the regiog<1. This phenomenon =z (A3)

can be hidden by the large valuesafprobability near the
curveq=1 is exponentially small. An exception is the sin-

. — and that similar relations are valid for a larger number of
gular point where the curvegT) andq=1 cross. 9

dislocations.

Formulas(A2),(A3) determine the physical meaning of
ACKNOWLEDGMENTS the parameteg,. It is clear thatu, may depend on tempera-
ture. Besides, EqA3) may hold only if dislocations are far
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APPENDIX B: ENERGY OF ONE DISLOCATION

APPENDIX A: CHEMICAL POTENTIAL . . .
In order to find the energy created by one dislocation we

In this Appendix we discuss the physical meaning ofhave to solve variational problef2.9) subject to constraint
chemical potential in the problem under consideration. De{2.10. Changing variables—y=27x/a we have
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|1 1
,8H0=—mln{EJ_[(VU)2+82(VVU)2]d2y ,8H0=§f_[(VG)2+ez(VVG)Z]dzy
ueP C c
1 — _
_ @[u(r)_w)]], (B1) = EJE(VGVG+sZVVGVVG)olZy
with V and(-) being the gradient and the averaging opera = 'B*f (k-m *(k- metve
’ il 3 T2 s A 2a 2[4 20 2[4 4

tors with respect ty, respectivelyC=(0,27) X (0,27). De- Cmezg (K[ &K% (Im[=+ &% m[*)(2)
note byG the periodic solutiorithe Green’s functionof the X d2y
equation

_ Bs 1

87 ez [KI*+e2lK|*

(BS)
AG—e2A%G=— B,

1
5()"”‘@1, (G)=0.

(B2) Since the series in E¢B5) converges slowly, we calcu-
late it by summing up the terms witk inside a circle of
Obviously, G is a function of the differencg—r. At y=r radiuse (|k|<e) and approximating the rest of the series by

the functionG is finite; denote its value b. a double integral,
Each periodic functioru(y) with zero mean can be pre-
sented as a series 1 1 1+ 202
S | ke
e [KIZ+e? k| JIK=elk|*+e2]k|* e?0?
uy)= 2 ue. (B3) (B6)

keZ!
2 For small ¢ the integral (B6) is approximately equal to

) 2 In(1/e). Starting from smallp and increasingg we ob-
Here uy=uy +iuy are some complex numbers, the Fourieriain convergence of the serié85) to

coefficients. For real-valued functiongy) the Fourier coef-

ficients obey the conditiom,=u_,, whereu denotes the By 1 ~

complex conjugate ofi. This condition means that, and ﬁHozﬂngﬁB* €, (B7)
u_, are not independent. To deal with independent coeffi-

C|ents_ we may choose_any subset &, which does not where'e does not depend oa. The calculations show that
contain pointk and —k simultaneously. As such we take the ~

. Lo . ~0.0327386. Formul&B7) gives the sum of the disloca-
setZ, that consists of pointe= (k, ,Ky) with k=1, k, any, € . .
andk,=0, k,=1. Then tion core energy and the energy of surrounding lattice. Sepa-

ration of the dislocation core energy from this sum is a mat-
ter of convention. If we, following Ref[12], interpret the

u(y)=2 ReE u ey term §1/4w)|n1/-£ as t.he ela§t|<: energy of the lattice sur-
keZy rounding the dislocation, thea can be regarded as the en-
ergy of the dislocation core found within the regularization
, » o 2.3.
=2 2+ [uy, cogk-y)—uy sin(k-y)]. 23
keZ
’ APPENDIX C: FUNCTIONAL INTEGRAL
The & function can be presentédymbolically as a series In this Appendix we will evaluate the functional integral
— _ 2
5(y)— 1 _ 2 Leik-y_ (B4) |:J e~ (WAuW - u)pyy (C1)

(277)2 kEZé (277)2

where (Au,u) is the quadratic functiondR.8), the integral is
From Egs.(B2) and (B4) we obtain taken over all functionsie P with (u)=0, andDu is de-
fined by the condition

JB .
G(y)= 2 2 2* 2114 e, ~(2)Aunpy =1 C2
cez, (2m)2(|K[2+e?K[*) e u=1. (€2

Thus, the energy of the lattice created by one dislocatioe show thatl = 1/\/® _(v/272), where®(2) is the func-
multiplied by 8 is given by tion (6.6).
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Denote the coordinates of the functiarfy) in the or-
thogonal basie*Y by u, (see Appendix B Due to the
orthogonality ofe’'Y it is easy to see that

W =u=( 3 et
k,meZé
=2 lul’= 22 |ug?.
kE/2 kE/2

Similarly

(Au,u)= f [(Vu)?+&2(VVu)?]d?y

(IkIZ+ &2k %) uy®.

=2(2m)2 2

ke /2

Since|uy 2= (up) 2+ (up)?, and @y, ,uy) with ke Z; charac-

terize fully periodic functions W|th zero mean, we shall

project P onto the space ofi, and uy. Denote byduy

=du,duy . Then
|=f exp[—Z [(27) 2N+ 2v]|uy/?
k
2(2m)°\
X H o H duy
keZ kEZ
22m)°N 1

kezs 22m)+dv O (v2m?)’

APPENDIX D: FUNCTION x

Consider the function

1 zN zN
—h,| —|= Z In
Nl 242) " 2N ke 7 772(|k|2+82|k|4)

(D1)

PHYSICAL REVIEW B6, 026129 (2002

We are going to find its limit abl—o, £—0 in such a way
thatp=2Ne?/a?=Ne?/272 remains constant. Let us rewrite
Eqg. (D1) in the form

g2 In( 1

z N)_
“\ 272

The sum in Eq(D2) may be considered as a sum over the
lattice with spacings. Then the sum is an integral sum for
the integral over 2D plane

f In( 1+
Ry
Therefore

1h ZN
N 202

. 1
N—oo, e—0— — f In
A7°p IR,

In the polar coordinates the latter expression reduces to
—x(p2)l4mp, with x(z) given by Eq.(6.9). So, ®.(N2)
=e2n(N) pehaves agX27* 2270 for largeN and small

E.

N zNe?/272
82|k|2+ 84|k|4 .
(D2)

>

! h
N 2Ns? (o

zNe?/27? 5
— | d*x.
x|+ [x|*

1+ dx.

X2+ ||

Note that the integrals.9) is elementary and can be found
exactly. In the interval 62z<1/4, the functiony(z) has the
form

Vi—4z 1
\/—2

For z=1/4 function x(z) is given by

=Inz. (D3)

x(2)= —\/1 4z|ni

1
x(2)=\4z—1 arctan/4z—1— 5inz. (D4)

Formulas(6.10 follow from Egs.(D3) and(D4).
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