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Theory of charge nucleation in two dimensions
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Thermal nucleation of two-dimensional charges is studied. It is argued that the probability ofN charge pairs
to appear has a simple asymptotics for largeN: pN5@q(c,b,m)#N/Z(b,m), whereq(c,b,m) is a function of
charge concentrationc, inverse temperatureb, and chemical potentialm, andZ(b,m) is the partition function.
We presentq(c,b,m) as a limit value of some functional integral and find an approximate value of this limit.
This provides thermodynamic description of nucleation transition. The probability distribution of charge posi-
tions is studied within the same approximation. The behavior of the probability distribution indicates that for
small charge concentration the transition is of Kosterlitz-Thouless type, i.e., the dipoles nucleated dissociate
and form a neutral plasma, while at larger charge concentration the transition corresponds to nucleation of
dipoles that may remain bounded. A transition with respect to chemical potential is observed, form,mcr the
charge nucleation is a transition of infinite order, while form.mcr it becomes a first-order transition.

DOI: 10.1103/PhysRevE.66.026129 PACS number~s!: 64.70.2p, 05.70.Fh, 64.60.2i
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I. INTRODUCTION

A system of charges is a basic model for explaining va
ous physical phenomena. We are going to discuss one fea
of such a system: nucleation of two-dimensional charges
to thermal fluctuations. The key ideas in this area belong
Kosterlitz and Thouless@1#. They argued that below som
critical temperature the charges are bound in dipoles. If te
perature exceeds the critical value dipoles dissolve and f
a neutral plasma. An enormous number of papers has
tributed to studying this transition. We mention here only t
review papers@2–4#. Most investigations follow Kosterlitz
and Thouless and explore the ideas of the renormaliza
group method. In this paper we consider an alternative
proach that is based on the direct asymptotic analysis of
tistical characteristics exploring the presence of a large
rameter, the number of charges. We give some argumen
favor of the following property of charge systems: the pro
ability of N charge pairs to appear,pN , has a simple asymp
totics for largeN:

pN5
1

Z~b,m!
@q~c,b,m!#N, ~1.1!

whereq(c,b,m) is a function of charge concentrationc ~the
area occupied by all charges divided by the specimen ar!,
inverse temperatureb, and chemical potentialm, and
Z(b,m) is the partition function. Charge concentrationc
plays the role of an order parameter of nonequilibrium c
figurations. Note thatN appears in two places in the righ
hand side of Eq.~1.1!: in the power and in the charge con
centration.
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Formula~1.1! implies a possibility of phase transition. T
make this obvious let us consider a simplified situation wh
Eq. ~1.1! is true for all admissible values ofN, 0<N
<Nmax, andq does not depend onc. The partition function
Z(b,m) is determined from the condition

(
N50

Nmax

pN51

and is equal to

Z~b,m!5 (
N50

Nmax

@q~b,m!#N5
12@q~b,m!#Nmax11

12q~b,m!
.

Then the probability ofN charge pairs to appear is given b
a simple relation

pN5
12q~b,m!

12@q~b,m!#Nmax11
@q~b,m!#N. ~1.2!

The dependence of probabilitiespN on N changes qualita-
tively if, in the course of temperature variation, the functi
q(b,m) passes the valueq(b,m)51. Indeed, forq,1,
Nmax@1,

pN'~12q!qN

while for q.1

pN'
q21

qNmax2N
.

Qualitative graphs ofpN in two different casesq,1 andq
.1 are shown in Fig. 1. Obviously, forq,1 charge nucle-
ation is impeded while forq.1 a large number of charge
should be observed. Dependence ofq on c may change the
©2002 The American Physical Society29-1
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shape of curves in Fig. 1. A more accurate discussion gi
below confirms that there is a charge nucleation transitio

In order to justify formula~1.1! we presentpN as a func-
tional integral. This integral contains a large parameterN.
The large parameter appears in the form that suggests u
Laplace’s method to evaluate the asymptotics of the inte
asN goes to infinity. In accordance with Laplace’s metho
the leading contribution to the asymptotics is provided by
integrals over vicinities of the stationary points of the in
grand. We use this idea to evaluate the integral and obtai
explicit formula forq(c,b,m). The computation of the func
tional integral gives the limit value of@pNZ(b,m)#1/N, which
is independent ofN. Although this does not prove the exis
tence of the limit of@pNZ(b,m)#1/N asN→`, one may ex-
pect that this limit exists. In any case, we obtain a low
bound for@pNZ(b,m)#1/N of the form

@pNZ~b,m!#1/N>q̃~c,b,m! ~1.3!

with explicitly determined functionq̃(c,b,m). This bound
enables one to outline the region in (b,m) plane where the
nucleation transition does occur. It remains valid indep
dently on the validity of Eq.~1.1!. There is also an uppe
bound

@pNZ~b,m!#1/N<S 2e11bm

c D 2

, ~1.4!

which is less informative.

FIG. 1. Qualitative graphs ofpN in two casesq,1 and
q.1.
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Determining all stationary points of the functional int
grand is an open problem, and it remains unclear whether
stationary point that we took into account leads to the corr
asymptotics~some discussion on this issue will be given fu
ther!. We therefore view the formula forq(c,b,m) as ap-
proximate. We discuss the outcomes of the approxim
theory as if it captured correctly the true features of t
charge system. It should be borne in mind, though, that so
of these features may be the artifacts of the approximati

Some of our conclusions on the physical nature of
phenomenon are similar to those obtained previously fr
different reasonings~see Refs. @2,5,6# and references
therein!.

In summary, nucleation of charges is characterized by
following features. There is a critical value of chemical p
tential mcr separating two ranges of chemical potentialm
,mcr and m.mcr , where nucleation of charges is qualit
tively different. The rangem,mcr includes the case of sma
fugacity ebm ~note thatmcr,0). For m,mcr the nucleation
transition is a transition of infinite order, i.e., thermodynam
potential and all its derivatives with respect to temperat
are continuous while thermodynamic potential is not an a
lytical function at the transition point. A typical phase di
gram in (c,T) plane is shown in Fig. 2~a!. In this figure the
horizontal and vertical axes correspond to the dimension
temperatureT and the charge concentrationc, respectively.
The thin curve is the curveq(c,b,m)51. It separates two
regions. Region q(c,b,m),1 corresponds to impede
charge nucleation, regionq(c,b,m).1 to massive charge
nucleation. For each temperature one may compute the p
ability that charges appear in concentrationc. The probability
distribution in the (c,T) plane is highly nonuniform. In the
regionq(c,b,m).1 the probability has a steep ridge on th
curvec̄(T) @the thick curve in Fig. 2~a!#, c̄ being the average
concentration. The ridge becomes a declining plateau a
from the curvec̄(T). The plateau has a sharp drop at t
curveq(c,b,m)51. In the regionq(c,b,m),1, the average
number of charges is finite and remain finite if the size of
specimen increases. Thus, in thermodynamic limit the av
age concentration is zero. Form.mcr ~fugacity is not neces-
sarily small! the situation changes: the nucleation transiti
FIG. 2. Phase diagram in the (c,T) plane:~a! m,mcr , ~b! m.mcr
9-2
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becomes a first-order transition. The critical temperat
splits in low critical temperatureTcr

2 and upper critical tem-
peratureTcr

1 . A typical phase diagram form.mcr is shown in
Fig. 2~b!. The thin curve in Fig. 2~b! separates the regions o
impeded and massive charge nucleation. The meaning o
low critical temperatureTcr

2 and the upper critical tempera
ture Tcr

1 is seen from the diagram. IfT,Tcr
2 there is a finite

average number of charges in the specimen, which rem
finite if the specimen size grows. IfT.Tcr

1 the system
abounds in charges. Although all concentrations of char
are virtually possible, the most probable is the average c
centration c̄(T) shown by the thick line. As in casem
,mcr , if one moves from regionq.1 to regionq,1 the
probability sharply drops at the boundaryq51. This empha-
sizes a peculiar behavior of the system betweenTcr

2 andTcr
1 :

the diagram shows that the nucleation of charges is a co
tive phenomenon—forTcr

2,T,Tcr
1 the probability of small

concentrations of charges~in the region beneath the curv
q51) is much smaller that the probability of a little b
higher concentrations of charges~above the curveq51).

Usually, the term ‘‘phase diagram’’ is used for graphs
the plane ‘‘average concentration-temperature.’’ The aver
concentration that is, in fact, also the most probable conc
tration, is in one-to-one correspondence with the chem
potential or the fugacity. Therefore phase diagrams are o
shown in the plane ‘‘fugacity-temperature.’’ We use the te
phase diagram also for transitions shown in the plane ‘‘or
parameter-temperature.’’ Phase diagrams in the usual s
are presented in Sec. VII.

The nucleation transition may differ from the Kosterlit
Thouless transition of dipole debonding, because the cha
in the right region may be bound in dipoles. In order
clarify this issue we explicitly found the probability distribu
tion of charge positions within the same approximation as
pN . It turns out that at low charge concentrations the nuc
ation transition is also the Kosterlitz-Thouless transition, i
the dipoles nucleated dissociate. At finite concentratio
however, the charges may remain bounded if no exte
field is applied.

The paper is organized as follows. In Sec. II we spec
the model. Our approach is outlined in Sec. III. We relate t
to the previously established results on the probability dis
bution of energy in Sec. IV. In Sec. V we explain how fun
tional integrals appear in our consideration. In Sec. VI
asymptotics of these integrals is considered and formulas
q in terms of (c,b,m) or (c,T,m) are obtained. In Sec. VI
we calculate thermodynamic potential and present phase
grams. In Sec. VIII an upper bound for phase diagrams
obtained. We analyze in Sec. IX the type of transition
studying theN-point distribution function. Probability distri-
bution in (c,T) plane is derived in Sec. X. This is followe
by Appendixes with auxiliary explanations.

II. ENERGY

To specify the physical model we choose, following K
sterlitz and Thouless, screw dislocations in a crystal
‘‘charges.’’ Let Burgers’ vectors of dislocations be direct
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along thex3-axis. The position of a dislocation is describe
by a point r in the (x1 ,x2)-plane. Dislocations deform the
surrounding crystal lattice and create elastic stresses.
stress tensor has two independent nonzero componentss13
ands23. The equilibrium equations lead to the existence o
stress functionc so that s135]c/]x2 , s2352]c/]x1.
Consider first the crystal containing one dislocation po
tioned at the pointr. The compatibility condition that re-
quires the existence of a displacement field connecting
perfect and the imperfect lattices, combined with Hook
law, yields the equation for the stress function

1

G
Dc52bd~x2r !, ~2.1!

whereb is thex3-component of Burgers’ vector,G the shear
modulus,d(x) the two dimensional~2D! d function, andD
Laplace’s operator.

Denote byC the cross section of the crystal by plan
x35const. If the boundary]C of the regionC is traction-free
then

c50 at ]C. ~2.2!

The density of elastic energy of the crystal is (“c)2/2G. The
total elastic energy is given by the integral

E5
h

2GE
C
~“c!2d2x, ~2.3!

with h being the crystal thickness in thex3-direction.
Energy~2.3! is infinite for the solution of Eqs.~2.1! and

~2.2! due to divergence at the pointx5r . Thus, a regulariza-
tion is needed. Various regularizations are possible. We
regularize the energy by introducing higher derivatives
Eq. ~2.3!,

E~c!5
h

2GE
C
@~“c!21e2~““c!2#d2x

5
h

2GE
C
H S ]c

]x1
D 2

1S ]c

]x2
D 2

1e2F S ]2c

]x1
2 D 2

12S ]2c

]x1]x2
D 2

1S ]2c

]x2
2 D 2G J d2x. ~2.4!

The small parametere has the dimension of length and play
the role of an ‘‘effective size’’ of the dislocation core.

Modification of energy yields modification of Eq.~2.1!
sincec must be the minimizer of the energy functional

I ~c!5E~c!2hbc~r !. ~2.5!

The minimum is sought over all smooth functionsc obeying
the boundary condition~2.2!. There is an additional bound
ary condition forc due to the dependence of the energy
higher derivatives, but we do not need its explicit form. T
minimizer č satisfies the equation
9-3
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1

G
~Dč2e2D2č !52bd~x2r !.

The minimum value of the functionalI (c) is equal to the
negative energy

min
cP(2.2)

I ~c!52E~ č !. ~2.6!

The relations of statistical mechanics contain the prod
2bE. It is therefore convenient to rewrite the variation
problem in terms of this product. It follows from Eqs.~2.4!,
~2.5!, and 2.6 that

2bE5 min
cP(2.2)

F bh

2G
~Ac,c!2bhbc~r !G , ~2.7!

where

~Ac,c!5E
C
@~“c!21e2~““c!2#d2x. ~2.8!

In order to explicitly perform further computations w
will use the periodic boundary conditions instead of t
traction-free boundary conditions. We expect that such a
placement will not change the results qualitatively. So,
what follows C is a square of the sizea, ux1u<a/2, ux2u
<a/2, and P is the subspace of functions that are dou
periodic and having double periodic first- and second-or
partial derivatives. It is convenient to change the unkno
function c→u: c5AG/hbu. Then the variational problem
takes the form

2bE5min
uPP

F1

2
~Au,u!2Ab* u~r !G , ~2.9!

where b* is the dimensionless inverse temperature,b*
5bGb2h.

Variational problem~2.9!, in contrast to Eq.~2.7!, requires
an additional constraint. The quadratic functional (Au,u) is
invariant with respect to shifts of functionu by a constant,
while the linear functionalAb* u(r ) is not. The periodic
boundary conditions, in contrast to the boundary condit
~2.2!, do not eliminate such shifts. Therefore, in order
have a well-posed variational problem with the energy fu
tional bounded below, we have to impose an additional c
straint eliminating the shifts. We put

^u&[
1

a2EC
ud2x50. ~2.10!

Variational problem ~2.9! with the additional constrain
~2.10! is well posed.

EnergyE is the sum of the elastic energy of the latti
surrounding the dislocation plus the energy of the disloca
core found within the regularization~2.4!. The latter can dif-
fer from the true energy of the dislocation core. The corr
tion of the energy is a constant that does not depend on
02612
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dislocation position. We denote it bye0. Thus, the total en-
ergy of a crystal containing one dislocation is

H5E1e0 .

The relation betweene0 , e, and the dislocation core energ
in the limit e→0 is established in Appendix B.

Let the crystal containN1 dislocations with Burgers’ vec-
tor b andN2 dislocations with Burgers’ vector2b. The dis-
locations are positioned at the pointsr 15(r 1

1 , . . . ,r N1

1 ) and

r 25(r 1
2 , . . . ,r N2

2 ). Then

2bHN~r 1,r 2!5min
uPP

F1

2
~Au,u!2~ l ,u!G2~N11N2!e0b,

~2.11!

where

~ l ,u!5Ab* S (
a51

N1

u~r a
1!2 (

a51

N2

u~r a
2!D . ~2.12!

We focus mostly on the case of neutral systems,N15N2
5N, with

~ l ,u!5Ab* (
a51

N

@u~r a
1!2u~r a

2!#. ~2.13!

For neutral systems the constraint~2.10! can be dropped
without losing well posedness of the variational proble
because the linear part~2.13! of the functional is also invari-
ant under shifts ofu by a constant. Nevertheless, we w
keep this constraint to maintain the nondegeneracy of
quadratic functional (Au,u).

The variational principle for energy, besides its key role
the functional integral formulation of the problem to be co
sidered further, gives important qualitative information abo
the system. We mention here a few useful facts. First,
zeroe0,

bHN>0, ~2.14!

and for nonzeroe0,

2bHN<2~N11N2!e0b. ~2.15!

Inequality ~2.14! follows from Eq. ~2.11! if we chooseu
50 as a trial function. Note that the self-energies of char
are included inHN , otherwise Eq.~2.14! does not hold. Sec-
ond, if one increasese, 2bHN increases also since the qu
dratic form (Au,u) grows. Third, if one change the model b
adding the termk*u2d2x into the quadratic functiona
(Au,u), 2bHN increases~for k.0) and grows monotoni-
cally with k since the functional to be minimized increase
Fourth,2bHN found for the periodic boundary conditions
2bHNupc does not exceed2bHN found for the traction-free
boundary conditions2bHNu fc if e is small:

2bHNupc<2bHNu fc . ~2.16!
9-4
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Indeed, ife is small, one may change in Eq.~2.11! the setP
of periodic functions with periodic derivatives by the wid
set P0 of periodic functions: this causes the reduction i
2bHN of the ordero(e). Then, choosing as a trial functio
in the variational problem onP0 the solution of the varia-
tional problem for traction-free boundary condition and n
glecting theo(e) correction, one obtains Eq.~2.16!.

III. NUCLEATION CRITERION

Consider a crystal placed in a heat bath at a given t
perature. Suppose that only neutral systems of dislocat
may appear due to thermal fluctuations. The probability o
set of N dislocation pairs to appear at the positio
(r 1

1 ,r 1
2), . . . ,(r N

1 ,r N
2) is assumed to be grand canonical:

f N~r 1,r 2!5
1

Z

e2Nbm1

~N! !2
e2bHN(r 1,r 2), ~3.1!

wherem1 is a parameter. The partition functionZ is deter-
mined by the normalization condition.

We redefine energy and parameterm1 by including the
additive term of energy22Nbe0 in 2Nbm1. Then Eq.~3.1!
takes the form

f N~r 1,r 2!5
1

Z

e2Nbm

~N! !2
e2bHN(r 1,r 2), ~3.2!

where the energyHN is determined by the variational prob
lem

2bHN~r 1,r 2!

5min
uPP

H 1

2
~Au,u!2Ab* (

a51

N

@u~r a
1!2u~r a

2!#J , ~3.3!

andm5m12e0.
The grand canonical distribution describes an equilibri

exchange of particles of a small system embedded in a l
bath. In that case, parameterm has the sense of chemic
potential of the bath. We will also callm chemical potential
though the physical situation under consideration is qu
different. The physical meaning ofm is discussed in Appen
dix A.

Possible values ofN range from zero to some maximum
possible number of dislocation pairsNmax. The probability
that there areN dislocation pairs in the crystal is

pN5
1

Z~b,m! (
r 1,r 2

e2Nbm

~N! !2
e2bHN(r 1,r 2). ~3.4!

By definition,HN50 for N50. Therefore, the probability
that there are no dislocations in the crystal is

p05
1

Z~b,m!
. ~3.5!

The probability that dislocations do appear is obviously
02612
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p512
1

Z~b,m!
. ~3.6!

The normalization condition(N50
Nmax pN51 yields the value of

the partition function

Z~b,m!5 (
N50

Nmax

(
r 1,r 2

e2Nbm

~N! !2
e2bHN(r 1,r 2). ~3.7!

Vectors r a
1 ,r a

2 run over a piece of a 2D discrete lattic
enclosed in the boxC. The lattice spacing is identified with
the magnitude of Burgers’ vectorb. States with coinciding
positions of a positive and a negative dislocation are
allowed since this yields an annihilation of two dislocation
such states have been taken into account in the sum witN
21 dislocation pairs. The coincidence of dislocations of t
same sign is possible: this corresponds to a dislocation w
a larger Burgers’ vector. Such states, however, should c
the factor that differs from 1/(N!) 2. To avoid the latter com-
plication we assume that dislocations with Burgers’ vect
of a magnitude larger thanb do not appear.

Let us representpN in the form

pN5
1

Z~b,m!
~qN!N, ~3.8!

where

qN5e2bmF (
r 1,r 2

1

~N! !2
e2bHN(r 1,r 2)G 1/N

. ~3.9!

We argue that, for largeN, qN depends onN in the thermo-
dynamic limit only through the dislocation concentrationc
52Nb2/a2. More precisely, letN and a tend to infinity in
such a way thatc remains constant. ThenqN tends to some
limit value q that depends on concentrationc, inverse tem-
peratureb, and chemical potentialm:

q5q~c,b,m!.

The values of parameters for which

q~c,b,m!51

are critical in the following sense: If, for somec and a given
b, q(c,b,m).1, then the sum

Z~b,m!5 (
N50

Nmax

~qN!N ~3.10!

contains many big terms and is very large. Therefore,
probability~3.6! that dislocations do appear is about unity.
contrary, if, at a givenb, q(c,b,m)<q* ,1 for all c, then
the sum~3.10! does not exceed a constant independent
Nmax, and there is a finite probability that dislocations do n
appear.
9-5
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Our analysis is based on the replacement of the sum
Eq. ~3.9! by the integral

qN5e2bmF 1

~N! !2EC
•••E

C
e2bHN(r 1,r 2)

d2r 1
1

b2
•••

d2r N
2

b2 G 1/N

,

~3.11!

where each variabler 1
1 , . . . ,r N

2 runs over the entire squar
C. Allowing each variabler 1

1 , . . . ,r N
2 to run over C we

neglect the condition that dislocation positions do not co
cide. The error caused by this is small if the concentratioc
is small. In the next two sections we compute the integra
Eq. ~3.11! approximately and find out that the right hand si
of Eq. ~3.11! does not depend onN. In this indirect way, we
support the assumption that it has a limit asN→`. We use
the formula obtained for the limit to discuss the dislocati
nucleation for allc, including finite c. The conclusions for
finite c require further investigation because the express
~3.11! is no longer valid in this case.

Note an essential feature of the expression~3.11!: it con-
tains big factorsb22. These factors stem from the ‘‘spac
discretization.’’ In a sense, the space quantumb is analogous
to the de Broglie length~compare with the expression for th
partition function in Ref.@4#!. To appreciate the contributio
of the factorsb22 let us write Eq.~3.11! in the form

qN5e2bmF ~a2/b2!2N

~N! !2
JNG 1/N

, ~3.12!

where

JN5E
C
•••E

C
e2bHN(r 1,r 2)

d2r 1
1

a2
•••

d2r N
2

a2
. ~3.13!

The ratioa2/b2 is equal to the number of atomsNa in the
areaC. The numberN! can be approximated by Stirling’
formula: lnN!5N ln N2N. Therefore,

~a2/b2!2N

~N! !2
5e2N ln Na22N ln N12N5e2N[12 ln(c/2)].

~3.14!

Obviously,c<1 and 12 ln(c/2).0. Thus, the number~3.14!
is very big: the ratio (a2/b2)N outweighsN!. The third factor
in Eq. ~3.12!, JN , is always less than unity, due to~2.14!
e2bHN<1, henceJN<1.

So, in Eq.~3.12! we have a competition of two factors
very big number~3.14! and presumably very small numbe
JN . QuantityqN may be larger than unity only due to the b
factor~3.14! that is caused by the ‘‘space quantization.’’ No
that the elementary estimate~1.4! follows immediately from
Eqs.~3.12!–~3.14! and ~2.15!.

Our next goal is to study the integralJN .

IV. DISTRIBUTION OF ENERGY

The integralJN admits the following probabilistic inter
pretation. Let us regardr 1

1 , . . . ,r N
2 as statistically indepen
02612
in

-

n

n

dent vectors homogeneously distributed overC. Then
HN(r 1,r 2) is the random function depending on these ra
dom vectors. The integral in Eq.~3.13! is the mathematica
expectation of exp@2bHN(r1,r2)#.

Let f N(E) be the probability density function of the en
ergy HN . Then

JN5E
C
•••E

C
e2bHN(r 1,r 2)

d2r 1
1

a2
•••

d2r N
2

a2

5E
0

`

e2bEf N~E!dE. ~4.1!

The energyHN possesses a special feature: according
Eq. ~2.11! it is the negative minimum value of a quadrat
functional. The probability density function of minimum va
ues of random quadratic functionals of this type was o
tained in Ref.@7#. It is easy to see that, after removing se
energies, the energy variance is of the orderN2. Thus, one
may expect that the ratioHN /N has a limit probability dis-
tribution. Indeed, it was shown that the probability distrib
tion function of the ratioh5HN /N, gN(h), after a self-
energy shift, has a limit,g`(h), asN→`, and an analytical
form of g`(h) was obtained. Functiong`(h) was investi-
gated further in Ref.@8# for the case of two-dimensiona
charges in a periodic box, it was found that the analyti
formula for g`(h) is in good agreement with the numeric
simulations conducted in Ref.@9#. We consider in this pape
an approximation of the integralJN , which corresponds to
replacing the functionf N(E) in Eq. ~4.1! by g`(NE). In
order to better understand the error introduced by s
change we repeat the argument from Ref.@7# in the follow-
ing section and reduce the evaluation ofJN to studying the
asymptotics inN of some functional integral.

V. FUNCTIONAL INTEGRAL

The idea of representing the partition function as a fu
tional integral is widely used in statistical physics~see, for
example, Refs.@10,11#!. We will follow it in our treatment
@7#.

The starting point is the following identity: for any pos
tive definite quadratic form (Au,u)m5( i , j 51

m Ai j uiuj and lin-
ear form (l ,u)m5( j 51

m l juj ,

Adet Am

~2p!mE e2(1/2)(Au,u)m2 i ( l ,u)mdmu5e2(1/2)(A21l ,l )m,

~5.1!

where detAm is the determinant of the matrixiAi j i ;
(A21l ,l )m5( i , j 51

m Ai j
21l i l j , Ai j

21 being the component of the

inverse matrix, andi 2521.
Since

min
u

F1

2
~Au,u!m2~ l ,u!mG52

1

2
~A21l ,l !m , ~5.2!

we can write the identity~5.1! in the form
9-6
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emin
u

[(1/2)(Au,u)m2( l ,u)m]

5Adet Am

~2p!mE e2(1/2)(Au,u)m2 i ( l ,u)mdmu.

~5.3!

Note here that, due to Eq.~2.11!, 2bHN is the minimum
value of the quadratic functional. Making a finite
dimensional truncation in the variational problem~2.11!, one
can evaluate the energy with any desirable accuracy.
truncated variational problem has the form~5.2! where
(Au,u)m and (l ,u)m are them-dimensional truncations of th
functionals (Au,u) and (l ,u). Therefore

e2bHN(r 1,r 2)5 lim
m→`

emin
u

[(1/2)(Au,u)m2( l ,u)m]

5 lim
m→`

Adet Am

~2p!mE e2(1/2)(Au,u)m2 i ( l ,u)mdmu.

We write this limit symbolically as

e2bHN(r 1,r 2)5E e2(1/2)(Au,u)2 i ( l ,u)Du, ~5.4!

where the ‘‘volume element’’Du is specified by the condi
tion

E Due2(1/2)(Au,u)51. ~5.5!

Integrating Eq.~5.4! over r 1,r 2 we have

JN5E e2(1/2)(Au,u)2 i ( l ,u)Du
d2r 1

1

a2
•••

d2r N
2

a2
.

This formula can be simplified due to a special form of t
functional (l ,u) ~2.13!. We obviously have

JN5E Due2(1/2)(Au,u)@Q~u!#N

5E Due2(1/2)(Au,u)1N ln Q(u), ~5.6!

where

Q~u!5E
C
E

C
e2 iAb

*
[u(r )2u(r 8)]

d2r

a2

d2r 8

a2
. ~5.7!

The integralJN depends on the large parameterN. We need
to find its asymptotics asN→`.

VI. ASYMPTOTICS OF THE FUNCTIONAL INTEGRAL

The integral ~5.6! resembles integrals studied b
Laplace’s method, since it contains the large parameteN.
The similarity is, to some extend, misleading: the parame
N is hidden also in the operatorA and the volume elemen
02612
he

r

Du that depend one;a/AN. Nevertheless, we proceed ig
noring this fact and hoping that, due to Eq.~5.5!, we capture
approximately the behavior of the integral. One may say t
we unbounde andN and, for a fixede, tendsN to infinity.
Then, at a final stage, the link betweene andN is taken into
account. More on the ‘‘real asymptotics’’ ofJN will be said
in Sec. VIII.

From Eq.~5.7!

Q~u!5S E
C
cosAb* u

d2x

a2 D 2

1S E
C
sinAb* u

d2x

a2 D 2

.

The functionalQ(u) is real and does not exceed unity. Thu
the integral~5.6! converges absolutely. We seek the statio
ary points ofQ(u). The stationary points obey the equatio

2sinAb* u cosAb* a1cosAb* u sinAb* a50, ~6.1!

where a is a constant depending onu: AQ(u)cosAb* a
5*cosAb* ud2x/a2. Putting Eq.~6.1! in the form

sinAb* @u~x!2a#50, ~6.2!

we see thatu(x) is a piecewise constant function taking th
valuesa1pk/Ab* , k50,61,62, . . . .Functionsu with a
finite value of energy (Au,u) are continuous. There is onl
one continuous functionu(x)50, which satisfies Eqs.~6.2!
and~2.10!. Other stationary points existing inm-dimensional
truncations tend to infinity in the spaceP with the energy
norm (Au,u)1/2 asm→`. Thus, one may expect thatu50 is
the only stationary point that should be taken into accou

In the vicinity of the pointu50 the functionalQ(u) takes
the form

Q~u!512
b*
a2 EC

u2d2x ~6.3!

and, within the same approximation,

ln Q~u!52
b*
a2 EC

u2d2x.

Note that the approximation of the functionalQ(u) by for-
mula ~6.3! may also be viewed as a high temperature exp
sion.

In the approximation~6.3!

JN5E Du expH 2
1

2EC
@“u21e2~““u!2#d2x

2
b* N

a2 E
C
u2d2xJ . ~6.4!

Computation of this elementary integral gives~see Ap-
pendix C!

JN5
1

AF«~b* N/2p2!
, ~6.5!
9-7
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where F«(z) is expressed in terms of the eigenvalues
energylk ,

F«~z!5 )
kPZ28

S 11
z

lk
D , lk5uku21«2uku4, «52pe/a.

~6.6!

In this infinite productk runs overZ28 that is the 2D square
lattice with unit spacing and with the origink50 being ex-
cluded.

It is convenient to writeF«(z) in the form F«(z)
5e22h«(z), where

h«~z!52
1

2
ln F«~z!52

1

2 (
kPZ28

lnS 11
z

uku21«2uku4
D .

~6.7!

Combining Eqs.~5.6!, ~6.5!, and~3.14! we get

qN5e2[12 ln(c/2)]1h«(b
*

N/2p2)/N12mb. ~6.8!
In the thermodynamic limit the functionh«(b* N/2p2)/N

converges to the function~see Appendix D! 2x(b* r)/4pr,
where

x~z!5E
0

`

lnS 11
z

u1u2D du, ~6.9!

andr is the density of dislocation cores:r52Ne2/a2. Func-
tion x(z) is positive, monotone increasing, and concave
real z.0. At the end points functionx(z) has the following
asymptotic behavior

x~z!;2z ln z1z as z→0; x~z!;pAz as z→`,
~6.10!

~see Appendix D!. The graph ofx(z) for real positivez is
plotted in Fig. 3.

From Eq.~6.8!

q5e2[12 ln(c/2)]21/4prx(b
*

r)12mb. ~6.11!

To present this result in the dimensionless form we introd
the dimensionless chemical potentialm* by the relation
m* b* 5mb, i.e., m* 5m/Gb2h, and the dimensionless dis
location core radiusl5e/b, so thatr5cl2. Thus, finally,

FIG. 3. Functionx(z).
02612
f

r

e

ln q52S 12 ln
c

2D2
1

4pl2c
x~b* cl2!12m* b* .

~6.12!

Note that, besidesc, b* , and m* , the functionq also de-
pends on the parameterl of the Hamiltonian as it is clearly
seen from Eq.~6.12!, but we do not emphasize this in ou
notation.

Defining the dimensionless temperatureT as T52p/b*
we obtainq in terms ofc andT,

ln q52S 12 ln
c

2D2
1

4pl2c
xS 2pl2c

T D1
4pm*

T
.

~6.13!

VII. THERMODYNAMIC POTENTIAL AND PHASE
DIAGRAMS

The thermodynamic potentialV is defined by the formula

V~b,m!52
1

Na
ln Z. ~7.1!

As follows from Eq. ~3.7!, the average dislocation densit
can be expressed in terms of the derivative ofV(b,m):

c̄[ (
N50

Nmax 2N

Na
pN5

1

bNa

] ln Z

]m
52

1

b

]V~b,m!

]m

52
1

b*

]V~b* ,m* !

]m*
. ~7.2!

Let us findV explicitly within the approximation of Sec
VI. Consider the partition function~3.10!. Since, for largeN,
qN'q, the partition function is finite ifq(c,b,m),1 for all
c. Therefore, in the limitNa→` the thermodynamic poten
tial V ~7.1! is zero andc̄50, in this case.

If q(c,b,m).1 for somec, then we compute the partition
function in the following way. Consider the sum

Z5 (
N50

Nmax

~qN!N.

SinceZ is very large, and there is only a finite number
terms for whichqN differ from q considerably, we may write

Z'Na (
N50

Nmax FqS 2N

Na
,b,m D GN 1

Na
.

The last sum may be approximated by the integral

(
N50

Nmax FqS 2N

Na
,b,m D GN 1

Na
'E

0

NmaxFqS 2N

Na
,b,m D GN dN

Na

5
1

2E0

cmax/2

@q~c,b,m!#cNa/2dc.

Finally,
9-8
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FIG. 4. ~a! V(c,T,m* ) as
function ofc for l51, m* 5210;
curve 1:T51/4, curve 2:T56.5,
curve 3:T57. ~b! Average dislo-

cation densityc̄ as function ofT
for l51, m* 5210.
h

n

q.

of

ial
of
-

g

y

to

en-
re
Z5
Na

2 E
0

cmax/2

e(1/2)Nac ln q(c,b,m)dc. ~7.3!

Denote byV(c,b,m) the function

V~c,b,m!5
1

2
c ln q~c,b,m!. ~7.4!

Let us show that thermodynamic potential is given by t
formula

2V~b,m!5max
c

V~c,b,m!. ~7.5!

According to this formula, functionV(c,b,m) plays the role
of nonequilibrium thermodynamic potential, whilec is an
order parameter.

Assume that, for eachb,m, the functionV(c,b,m) of c is
smooth and bounded above@the bound~1.4! is too rough to
guarantee that#. Denote the point where the maximum valu
of V(c,b,m) is reached byĉ. Consider first the case thatĉ is
an internal point of the integration interval. At this poin
]V/]c50. Assume that]2V/]c2Þ0. Obviously,]2V/]c2

,0. The asymptotics ofZ can be found from Eq.~7.3! by
Laplace’s method:

Z5
Na

2
e2(1/2)NaV(b,m)F2pNa

]2V~ ĉ,b,m!

]2c
G21/2

.

~7.6!

Formula ~7.5! follows from Eqs.~7.6! and ~7.1!. Note also
that the pointĉ coincides with the average dislocation de
sity c̄.

Formula~7.5! holds true also ifĉ50 andV(0,b,m)Þ0:
we still have the exponential asymptotics of the type~7.6!
~with a different factor!. The last option to consider isĉ50
andV(0,b,m)50. In this case the asymptotics ofZ changes:
Z grows slower than any exponential function ofNa @under
some physically nonrestrictive assumptions satisfied, in p
ticular, for functionq(c,b,m) of Eq. ~6.12!#. Therefore func-
tion ~7.1! is zero. On the other hand, maxc V(c,b,m)50 and
again Eq.~7.5! is valid.

Consider now the nonequilibrium thermodynamic pote
tial within the approximation~6.12! in terms of temperature
that is defined asT52p/b,
0261
e

e

t

-

ar-

n-

V~c,T,m!5cF12 ln
c

2
2

1

8pl2c
xS 2pl2c

T D1
2pm*

T G .

~7.7!

Let c tends to zero. Keeping only the leading terms in E
~7.7! asc→0 in accordance with Eq.~6.10!, we have

V~c,T,m!5S 1

4T
21D c ln c. ~7.8!

We see that there is a critical value of temperatureTcr51/4,
where the behavior of the system changes: forT,Tcr , the
function V(c,T,m) has a local maximum atc50, for T
.Tcr its local maximum is attained at some positive value
c. Whether functionV(c,T,m) has a global maximum atĉ
50 or at ĉ.0 depends on the value of chemical potent
m* . Some conclusion can be drawn from the analysis
functionV(c,T,m) for smallc and small temperature devia
tions from the critical value. ExpandingV with respect to
small c and T85(T2Tcr)/T and keeping only the leadin
terms, we have

V~c,T,m!5c@2T8ln c18p~m* 2mcr!1AT8#, ~7.9!

where mcr52 ln(16pl2)/8p, and A is some coefficient
whose value is not essential for what follows. LetT8 be
much smaller thanm* 2mcr . Equating]V/]c to zero we
have

2T8ln c18p~m* 2mcr!50. ~7.10!

This equation has a solutionĉ that does not exceed unit
only if m* ,mcr . The solution is

ĉ5e8p(m
*

2mcr)/T8. ~7.11!

For l51 the critical value of chemical potential is equal
mcr520.1559.

Numerical analysis of function~7.7! shows that the above
mentioned features established for small values ofc andT8
are, in fact, the global features of the thermodynamic pot
tial. The global features are illustrated in Figs. 4–5. Figu
4~a! shows the dependence ofV(c,T,m* ) on c for m*
5210 andT5Tcr51/4, T56.5, T57. Figure 4~b! shows
the corresponding dependence ofc̄ on T. Note that all de-
rivatives of functionc̄(T) vanish atT5Tcr . Thermodynamic
potentialV(T,m ) is continuous atT5Tcr along with all its
*

29-9
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FIG. 5. ~a! V(c,T,m* ) as
function of c for l51, m* 50;
curve 1: T50.02, curve 2: T
50.024, curve 3: T50.02757,
curve 4: T50.029. ~b! Average

dislocation densityc̄ as function
of T for l51, m* 50
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derivatives with respect toT. Indeed, from Eqs.~7.9! and
~7.11!, V5AT8exp@8p(m*2mcr)/T8# and all derivatives of
V with respect toT vanishes atT5Tcr . Thus, the transition
is of infinite order.

The situation changes ifm becomes greater thanmcr . A
typical graph is shown in Fig. 5~a! for the casem* 50, l
51. At low temperatures~curve 1! V(c,b,m) is monotoni-
cally decreasing, it has the only maximum at the end po
c50. As temperature rises a new local maximum appe
~curve 2!, but it is still smaller than that at the end pointc
50, and the average dislocation density is still equal to ze
The value ofV(c,b,m) at the new maximum becomes equ
to the value at the end pointc50 when temperature reache
the low critical valueTcr

2 ~curve 3!. ForT.Tcr
2 the maximum

is greater than 0 and attained at a pointc̄.ccr ~curve 4!. At
the instant when temperature passes the pointTcr

2 , the aver-
age dislocation density jumps from zero toccr . At T5Tcr

2

thermodynamic potential has a jump of the derivative w
respect tom* , and the transition is the first-order phase tra
sition. The corresponding graph of the average disloca
density as function ofT is shown in Fig. 5~a!. The transition
takes place atT5Tcr

2'0.027 57, at whichc̄ jumps from zero
to 0.626.

The closer the value ofm* to mcr , the smaller the jump of
average concentrationc̄. For l51, m* 520.01 the plot of
c̄(T) is shown in Fig. 6~a! @the jump inc̄(T) is '0.19 and
Tcr

2'0.0622#. This plot corresponds to the phase diagra

shown in Fig. 1~b!. For l51,m* 520.02 the plot ofc̄(T) is
shown in Fig. 6~b!.

The point (c̄,Tcr
2) where the jump occurs coincides wit

the point on the curveq(c,T,m)51 in the (c,T)-plane
where it has the vertical tangent line. Indeed, differentiat
function ~7.4! with respect toc we have lnq1cq21]q/]c50.
02612
t
rs

o.
l

-
n

g

The above mentioned point obeys this equation since at
point q51 and]q/]c50. This fact along with the property
of the curveq51, which will be discussed in Sec. X, mak
the graphs of these curves quite instructive. These curves
shown in Fig. 7 for various values of parameters.

Figure 7~a! illustrates the dependence of the curveq51
on parameterl. Increase ofl corresponds to increase of th
dislocation core sizee. As was mentioned in Sec. II,
2bHN grows if e increases. Thus,JN and, hence,q, must
grow. This corresponds to motion of the curvesq51 to the
left in Fig. 7~a!. Accordingly, the low critical temperatureTcr

2

decreases asl increases.
Decrease ofm* yields decrease ofq. Therefore the curves

q51 move to the right as shown in Fig. 7~b!. Accordingly,
the low critical temperature grows. The influence ofm* is
especially important for low temperature since the last te
in Eq. ~6.13! becomes dominant asT→0. The level curve
q51 is plotted in Fig. 2~b! for l51, m* 520.01. One can
see that the critical temperatureTcr

2'0.0622 is larger than
that obtained in the casem* 50. At the same time, the cor
responding dislocation densityccr'0.19 is lower than that
for m* 50, for which ccr'0.626. Asm* →mcr from above
(mcr'20.1559 forl51) the low critical temperatureTcr

2

approachesTcr , while the critical dislocation densityccr ap-
proaches zero@see Fig. 7~c!#.

Figure 8~a! shows the phase diagram in the (T,m* )-plane.
The low critical temperatureTcr

2 increases monotonically a
m* decreases down to the critical valuemcr , from there on
Tcr

25Tcr51/4. The corresponding phase diagram in t
(T,z)-plane, withz5e2pm

*
/T being the fugacity, is shown in

Fig. 8~b!.

VIII. UPPER BOUND FOR PHASE DIAGRAMS

In this section we construct a lower bound for the functi
q(c,T,m), i.e., a functionq̃(c,T,m) such that
FIG. 6. Average dislocation

density c̄ as function ofT for l
51 and ~a! m* 520.01, ~b! m*
520.02.
9-10



THEORY OF CHARGE NUCLEATION IN TWO DIMENSIONS PHYSICAL REVIEW E66, 026129 ~2002!
FIG. 7. Level curvesq51 for differentl andm* . ~a! m50; curve 1:l50.5, curve 2:l51, curve 3:l52. ~b! l51 ; curve 1:m*
520.01, curve 2:m* 520.02, curve 3:m* 520.05. ~c! l51 (mcr'20.1559); curve 1:m* 520.14, curve 2:m* 520.15, curve 3:
m 520.155.
s.

*

q̃~c,T,m!<q~c,T,m!. ~8.1!

If q̃.1, then q.1, and the nucleation transition occur
Since the level curveq51 separates the (c,T)-plane into
two regions, that on the right corresponding toq.1 and that
on the left corresponding toq,1, the level curveq̃51
should lie in the right region. Thus,q̃51 outlines the region
where massive nucleation of charges does occur.

Consider the integralJN

JN5E e2(1/2)(Au,u)@Q~u!#NDu. ~8.2!

We are going to show that

JN> J̃N5constANeNS(c,b
*

), ~8.3!

whereS(c,b ) is determined by the variational problem
*

02612
S~c,b* !5 max
0<h<1

min
0<z

F ln~12h!1zh

2
1

4pcl2
x~b* cl2z!G , ~8.4!

and x(z) is the function~6.9!. From Eqs.~8.3! and ~3.12!,
for largeN, an estimate follows

qN>2S 12 ln
c

2D1S~c,b* !12m* b* .

We start with the derivation of Eq.~8.3!.
Denote byg(j) the function

g~j!5E
Q(u)<j

e2(1/2)(Au,u)Du, ~8.5!

whereQ(u) is the functional~5.7!. The functionalQ(u) is
positive and does not exceed unity since
FIG. 8. Phase diagram forl51 in ~a! (T,m* ) plane,~b! (T,z) plane, withz being fugacity.
9-11
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Q~u!5S E
C
cosAb* u

d2x

a2 D 2

1S E
C
sinAb* u

d2x

a2 D 2

<E
C

d2x

a2 EC
cos2Ab* u

d2x

a2

1E
C

d2x

a2 EC
sin2Ab* u

d2x

a2
51.

Therefore,g(j)50 if j<0, g(j)51 if j>1, andg(j) in-
creases monotonically asj grows from 0 to 1. Obviously
JN5*0

1jNdg(j). Integrating by parts we obtain

JN5NE
0

1

jN21@g~1!2g~j!#dj. ~8.6!

The functionG(j)[g(1)2g(j) can be written as
02612
G~j!5E
Q(u)<1

e2(1/2)(Au,u)Du2E
Q(u)<j

e2(1/2)(Au,u)Du

5E
Q(u)>j

e2(1/2)(Au,u)Du. ~8.7!

It is convenient to introduce the variableh512j and
write Eqs.~8.6! and ~8.7! in the form

JN5NE
0

1

~12h!N21G~12h!dh,

G~12h!5E
R
e2(1/2)(Au,u)Du,

whereR is the following regionR5$uu12Q(u)<h%. Con-
sider also the region

R̃5H uU b*
a2 EC

u2d2x<hJ .

The regionR is wider than the regionR̃. Indeed,
12Q~u!512S E cosAb* u
d2x

a2 D 2

2S E sinAb* u
d2x

a2 D 2

5S 12E cosAb* u
d2x

a2 D S 11E cosAb* u
d2x

a2 D 2S E sinAb* u
d2x

a2 D 2

5S 12E cosAb* u
d2x

a2 D S 2211E cosAb* u
d2x

a2 D 2S E sinAb* u
d2x

a2 D 2

52S 12E cosAb* u
d2x

a2 D 2S 12E cosAb* u
d2x

a2 D 2

2S E sinAb* u
d2x

a2 D 2

,2E
C
~12cosAb* u!

d2x

a2

,
b*
a2 EC

u2d2x.
In the last inequality we took into account that 12cosx

<x2/2. Therefore, ifuPR̃ then uPR and, hence,R̃,R.
Thus,G(12h)>G̃(h)[* R̃e2(1/2)(Au,u)Du, and

JN> J̃N[NE
0

1

~12h!N21G̃~h!dh.

The asymptotics of the integralJ̃N as N→` can be found
explicitly. To this end we putJ̃N in the form
J̃N5NE
0

1

~12h!N21E
b
*

/a2*Cu2d2x,h
e2(1/2)(Au,u)Dudh

5NE ~12h!N21
dz

2p iz
expFzh2

zb*
a2 E

C
u2d2x

2
1

2
~Au,u!GDudh.

Here we used a presentation of the step functionu(E)
9-12
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FIG. 9. Lower bound for functionq at l51. ~a! m* 50; curve 1:q51, curve 2:q̃51. ~b! m* 520.01; curve 1:q51, curve 2:q̃
51. ~c! Upper bound for phase diagram: curve 1~solid line!, phase diagram of approximate theory from Fig. 8; curve 2~dash line!: exact
upper bound.
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x-
5*eEzdz/2p iz. The integral is taken over the line@a2 i`,a
1 i`# in the complexz plane,a.0. Changingz to Nz we
obtain

J̃N5NE dzdh

2p iz
eN[ ln(12h)1zh]E

P
expF2

1

2
~Au,u!

2
zb* N

a2 E
C
u2d2xGDu.

As shown in Appendix C, the integral overP is equal to
@F«(zb* N/2p2)#21/2. The function F«(zb* N/2p2) con-
verges in the thermodynamic limit to exp@Nx(b*rz)/2pr#,
wherex(z) is given by Eq.~6.9!. Thus,

J̃N5NE
0

1E
a2 i`

a1 i`dzdh

2p iz
eN[ ln(12h)1zh2(1/4pr)x(rb

*
z)] .

The asymptotics of this integral is given by Eqs.~8.3! and
~8.4!.

Denote byq̃(c,T,m* ) the function

q̃~c,T,m* !52S 12 ln
c

2D1S~c,2p/T!14pm* /T.

The level curvesq̃51 are shown in Figs. 9~a,b! for various
values of parameters.

Figure 9~c! shows the upper bound of the phase diagr
in the plane (T,m* ). The dash line corresponds toT̃cr

2 versus

m* , whereT̃cr
2 is the critical temperature determined fro

the curveq̃51. The solid line on this figure corresponds
our approximate theory.

IX. DIPOLE STATE VERSUS PLASMA STATE

The phase transition described above corresponds
nucleation transition if the temperature is high enough for
dislocations to appear. Now we are going to exam
whether the positive and negative dislocations are boun
dipoles or form a neutral plasma. Unfortunately, the mom
02612
a
e
e
in
t

m5^(r 1
12r 1

2)2&, being a simple characteristic, does n
serve as an indicator of the dipole-plasma transition beca
m is always of the ordera2. Indeed, in the plasma state,m is
obviously of the ordera2; in the dipole state,r 1

1 may be
bound with, say,r 2

2 and r 1
2 with r 2

1 while r 1
1 and r 1

2 run
over the whole specimen, therefore, againm;a2. One needs
a more subtle characteristics. As such we consider the p
ability density of position of the first negative dislocatio
under the condition that there areN dislocation pairs in the
specimen and the positions of all positive dislocatio
r 1

1 , . . . ,r N
1 are fixed. Denote this function ofr 1

2 by
f N(r 1

2ur 1
1 , . . . ,r N

1). In the dipole state the function
f N(r 1

2ur 1
1 , . . . ,r N

1) has strong local maxima at the poin
r 1

1 , . . . ,r N
1 . Otherwise the system is in the plasma state

According to Eq.~3.1!

f N~r 1
2ur 1

1 , . . . ,r N
1!

5
1

ZN
E e2bHN(r 1,r 1

2 , . . . ,r N
2)d2r 2

2
•••d2r N

2 .

~9.1!

Note that all factors that do not depend onr 1
2 can be in-

cluded in the normalizing factorZN . In particular, one can
use formula~3.3! for 2bHN . Using Eqs.~2.11! and~5.3! we
write Eq. ~9.1! as a functional integral

f N~r 1
2ur 1

1 , . . . ,r N
1!5E expF2

1

2
~Au,u!1 iAb* u~r 1

2!

2 iAb* (
a51

N

u~r a
1!G

3S E
C
eiAb

*
u(x)d2xD N21 Du

ZN
. ~9.2!

Integration with respect tou is taken over the subspace e
tracted by the constraint~2.10!. SinceN is large, we may
replace the power (N21) in Eq. ~9.2! by N and write Eq.
~9.2! in the form
9-13
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f N~r 1
2ur 1

1 , . . . ,r N
1!5

1

ZN
E e2(1/2)(Au,u)1 iAb

*
u(r 1

2)1Ns(u)Du,

~9.3!

where

s~u!52
iAb*

N (
a51

N

u~r a
1!1 lnE

C
eiAb

*
u(x)d2x. ~9.4!

Note that functional~9.4! is invariant with respect to shifts o
u by a constant.

Let the positive charges be distributed more or less ho
geneously and u(x) be a smooth function. Then
(a51

N u(r a
1)/N'*Cu(x)d2x/a2, and the first term in Eq

~9.4! vanishes due to Eq.~2.10!. The only smooth stationary
point of Eq.~9.4! is u50. This suggests an approximation
the second term in Eq.~9.4! by the functional

lnE
C
eiAb

*
ud2x. lnS E

C
d2x2

b*
2 E

C
u2d2xD

;2
b*
2a2EC

u2d2x.

Here we dropped the constant lna2 redefiningZN . Finally,
we put

s~u!52
iAb*

N (
a51

N

u~r a
1!2

b*
2a2EC

u2d2x. ~9.5!

One can regard Eq.~9.5! as the first terms of the high tem
perature~small b* ! expansion ofs. In this approximation
f N(r 1

2ur 1
1 , . . . ,r N

1) can be found explicitly. Indeed,

ZNf N~r 1
2ur 1

1 , . . . ,r N
1!

5E e2(1/2)(Au,u)1 iAb
*

u(r 1
2)1Ns(u)Du

5eminu I (u,r 1
2ur 1

1 , . . . ,r N
1), ~9.6!

I ~u,r 1
2ur 1

1 , . . . ,r N
1!5

1

2
~Au,u!

1
b* N

2a2 E u2d2x1Ab* u~r 1
2!

2Ab* (
a51

N

u~r a
1!.

Here we use again Eq.~5.3!. Note that, due to the presence
the termb* N^u2&/2 that is positive definite, the functionalI
is bounded below inP. Therefore the constraint^u&50 can
be removed in the minimization problem~9.6!, for this
changes minI by a constant that can be included in the n
malizing factor.

Denote byG(x,x8) the periodic solution of the equation
02612
o-

-

DG2e2D2G2
b* N

a2
G52d~x2x8!. ~9.7!

Obviously,G(x,x8) is a function of the differencex2x8. At
x5x8 the functionG is finite; denote its value byG0.

We have

min I 52
b*
2 F (

a,b51

N

G~r a
1 ,r b

1!1G~r 1
2 ,r 1

2!

22(
a51

N

G~r a
1 ,r 1

2!G . ~9.8!

SinceG(r 1
2 ,r 1

2)5G0 is a constant, the only terms depen
ing on r 1

2 are (aG(r a
1 ,r 1

2)5(aG(r 1
22r a

1). Keeping only
these terms and redefiningZN accordingly, we obtain

f N~r 1
2ur 1

1 , . . . ,r N
1!5const expFb* (

a51

N

G~r 1
22r a

1!G .

~9.9!

So the dipole-plasma transition is determined by the beh
ior of the solution of Eq.~9.7!. Solution of Eq.~9.7! in scaled
coordinates x/« depends only on the parameterk
54pl2c/T. For finitek the solution of Eq.~9.7! is concen-
trated around the pointx8. Thus, the negative charger 2 is
located in the vicinity of a positive charge with overwhelm
ing probability. For smallk the solution of Eq.~9.7! spreads
over the cell, and the system is in the plasma state. Smak
corresponds to small concentrations. This suggests tha
nucleation transition at small concentrations is accompan
by dipole debonding while the dipoles nucleated at high c
centrations may remain bounded.

X. PROBABILITY DISTRIBUTION

In this section we consider some features of probabi
distributionpN .

First, let temperature and chemical potential be such
q(c,b,m),1 for all c. Then the sum

Z5 (
N50

Nmax

~qN!N ~10.1!

is finite in thermodynamic limit because its tail is approx
mated by the converging series(qN. In thermodynamic limit
we may put in Eq.~10.1!, Nmax5`. The average number o
charges

N̄5 (
N50

`

NpN

is finite, since for largeN the terms of the sum decay expo
nentially asNqN/Z5NeN ln q/Z, ln q,0. We conclude that in
the zone of ‘‘impeded charge nucleation’’ the average nu
ber of charges does not depend on the specimen size.
9-14
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If function q(c,b,m).1 for somec,b, andm, the situa-
tion changes drastically. In this case, in accordance with
~7.6!,

Z5conste2(1/2)NaV(b,m) ~10.2!

is exponentially large sinceV(b,m),0. The average con
centration c̄ is finite, and the average number of charg
grows proportionally to the specimen size. In this case i
better to regard probabilitypN as a function ofc, p5p(c).
Probabilityp(c) reaches its maximum at the pointc̄. Indeed,
for a givenc, N tends to infinity asNa→`. Thus, one can
replace in Eq.~3.8! qN by q and write

p~c!5
q(1/2)cNa

Z
. ~10.3!

From Eqs.~10.3!, ~10.2!, and~7.4!

p~c!5const expS 1

2
Na$c ln q~c,b,m!

2max
c

@c ln q~c,b,m!#% D . ~10.4!

Obviously, the maximum value ofp(c) is reached at the
point c5 c̄. Functionp(c) decays exponentially away from
the pointc5 c̄.

Additional drops of functionp(c) occur at pointsc5c*
whereq(c,b,m)51. Indeed, from Eq.~10.4!

p~c* 1Dc!

p~c* 2Dc!

5expH 1

2
Na@~c* 1Dc!ln q~c* 1Dc,b,m!

2~c* 2Dc!ln q~c* 2Dc,b,m!#J
5eNa(dq/dc

*
)Dc.

We see that probability in the regionq.1 is exponentially
larger than probability in the regionq,1. This phenomenon
can be hidden by the large values ofZ: probability near the
curve q51 is exponentially small. An exception is the si
gular point where the curvesc̄(T) andq51 cross.
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APPENDIX A: CHEMICAL POTENTIAL

In this Appendix we discuss the physical meaning
chemical potential in the problem under consideration. D
02612
q.

s
s

.

h

f
-

note by xi the position of atoms of a 2D crystal, wherei
51, . . . ,Na , Na is the total number of atoms. Le
H(x1 , . . . ,xNa

) be the potential energy of the atom config

ration x1 , . . . ,xNa
. The probability of atoms to occupy th

positions x1 , . . . ,xNa
is assumed to be Gibbsia

f (x1 , . . . ,xNa
)5e2bH(x1 , . . . ,xNa

)/Z0. Various equilibrium
states of the crystal correspond to local minima of funct
H. There are local equilibrium states that correspond to
presence of dislocations in the crystal. The 2Na-dimensional
configurational space of all possible atom positions can
split into subregions that correspond to no dislocations,
the presence of one dislocation positioned at pointr 1, two
dislocations positioned at pointsr 1 ,r 2, etc. The probability
that there is a dislocation at the pointr 1 is given by the
integral f (r 1)5*e2bH(x1 , . . . ,xNa

)d2x1•••d2xNa
/Z0, which is

taken over the subregion of the configurational space co
sponding to this dislocation position. Denote this subreg
by A(r 1). Then

f ~r 1!5e2bH(r 1)

3E
A(r 1)

1

Z0
e2b[H(x1 , . . . ,xNa

)2H(r 1)]d2x1•••d2xNa
,

~A1!

whereH(r 1) is the energy of the crystal containing one d
location at the pointr 1. We introduce the parameterm1 by
the formula

E
A(r 1)

1

Z0
e2b[H(x1 , . . . ,xNa

)2H(r 1)]d2x1•••d2xNa
5

ebm1

Z
,

~A2!

whereZ was defined in Sec. III. Moreover, we assume th
for states with two dislocations positioned at pointsr 1 ,r 2,

E
A(r 1 ,r 2)

1

Z0
e2b[H(x1 , . . . ,xNa

)2H(r 1 ,r 2)]d2x1•••d2xNa

5
e2bm1

Z
, ~A3!

and that similar relations are valid for a larger number
dislocations.

Formulas~A2!,~A3! determine the physical meaning o
the parameterm1. It is clear thatm1 may depend on tempera
ture. Besides, Eq.~A3! may hold only if dislocations are fa
apart, otherwisem1 in Eq. ~A3! may depend on the distanc
between dislocations.

APPENDIX B: ENERGY OF ONE DISLOCATION

In order to find the energy created by one dislocation
have to solve variational problem~2.9! subject to constraint
~2.10!. Changing variablesx→y52px/a we have
9-15
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bH052min
uPP

H 1

2EC̄
@~“u!21«2~““u!2#d2y

2Ab* @u~r !2^u&#J , ~B1!

with “ and ^•& being the gradient and the averaging ope
tors with respect toy, respectively,C̄5(0,2p)3(0,2p). De-
note byG the periodic solution~the Green’s function! of the
equation

DG2«2D2G52Ab* Fd~y2r !2
1

~2p!2G , ^G&50.

~B2!

Obviously, G is a function of the differencey2r . At y5r
the functionG is finite; denote its value byG0.

Each periodic functionu(y) with zero mean can be pre
sented as a series

u~y!5 (
kPZ28

uke
ik•y. ~B3!

Here uk5uk81 iuk9 are some complex numbers, the Four
coefficients. For real-valued functionsu(y) the Fourier coef-
ficients obey the conditionūk5u2k , where ū denotes the
complex conjugate ofu. This condition means thatuk and
u2k are not independent. To deal with independent coe
cients we may choose any subset ofZ28 , which does not
contain pointsk and2k simultaneously. As such we take th
setZ2

1 that consists of pointsk5(kx ,ky) with kx>1, ky any,
andkx50, ky>1. Then

u~y!52 Re(
kPZ2

1
uke

ik•y

52 (
kPZ2

1
@uk8 cos~k•y!2uk9 sin~k•y!#.

Thed function can be presented~symbolically! as a series

d~y!2
1

~2p!2
5 (

kPZ28

1

~2p!2
eik•y. ~B4!

From Eqs.~B2! and ~B4! we obtain

G~y!5 (
kPZ28

Ab*
~2p!2~ uku21«2uku4!

eik•y.

Thus, the energy of the lattice created by one disloca
multiplied by b is given by
02612
-

r

-

n

bH05
1

2EC̄
@~“G!21e2~““G!2#d2y

5
1

2EC̄
~“G“Ḡ1«2

““G““Ḡ!d2y

5
b*
2 E

C̄
(

k,mPZ28

~k•m1«2~k•m!2!eik•ye2 im•y

~ uku21«2uku4!~ umu21«2umu4!~2p!4

3d2y

5
b*
8p2 (

kPZ28

1

uku21«2uku4
. ~B5!

Since the series in Eq.~B5! converges slowly, we calcu
late it by summing up the terms withk inside a circle of
radius% (uku,%) and approximating the rest of the series
a double integral,

(
uku.%

1

uku21«2uku4
'E

uku.%

1

uku21«2uku4
d2k5p ln

11«2%2

«2%2
.

~B6!

For small % the integral ~B6! is approximately equal to
2p ln(1/«). Starting from small% and increasing% we ob-
tain convergence of the series~B5! to

bH0.
b*
4p

ln
1

«
1b* ẽ, ~B7!

where ẽ does not depend on«. The calculations show tha
ẽ'0.032 7386. Formula~B7! gives the sum of the disloca
tion core energy and the energy of surrounding lattice. Se
ration of the dislocation core energy from this sum is a m
ter of convention. If we, following Ref.@12#, interpret the
term (1/4p)ln1/« as the elastic energy of the lattice su
rounding the dislocation, thenẽ can be regarded as the e
ergy of the dislocation core found within the regularizati
~2.3!.

APPENDIX C: FUNCTIONAL INTEGRAL

In this Appendix we will evaluate the functional integra

I 5E e2(1/2)(Au,u)2n^u2&Du, ~C1!

where (Au,u) is the quadratic functional~2.8!, the integral is
taken over all functionsuPP with ^u&50, andDu is de-
fined by the condition

E e2(1/2)(Au,u)Du51. ~C2!

We show thatI 51/AF«(n/2p2), whereF«(z) is the func-
tion ~6.6!.
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Denote the coordinates of the functionu(y) in the or-
thogonal basiseik•y by uk ~see Appendix B!. Due to the
orthogonality ofeik•y it is easy to see that

^u2&5^uū&5K (
k,mPZ28

ukūmei (k2m)•yL
5 (

kPZ28
uuku252 (

kPZ2
1

uuku2.

Similarly

~Au,u!5E @~“u!21«2~““u!2#d2y

52~2p!2 (
kPZ2

1
~ uku21«2uku4!uuku2.

Sinceuuku25(uk8)
21(uk9)

2, and (uk8 ,uk9) with kPZ2
1 charac-

terize fully periodic functions with zero mean, we sha
project P onto the space ofuk8 and uk9 . Denote byduk

5duk8duk9 . Then

I 5E expH 2(
k

@~2p!2lk12n#uuku2J
3 )

kPZ2
1

2~2p!2lk

2p )
kPZ2

1
duk

5 )
kPZ2

1

2~2p!2lk

2~2p!2lk14n
5

1

AF«~n/2p2!
.

APPENDIX D: FUNCTION x

Consider the function

1

N
h«S zN

2p2D [2
1

2N (
kPZ28

lnS 11
zN

2p2~ uku21«2uku4!
D .

~D1!
02612
We are going to find its limit asN→`, «→0 in such a way
thatr52Ne2/a25N«2/2p2 remains constant. Let us rewrit
Eq. ~D1! in the form

1

N
h«S z

2p2
ND 52

1

2N«2 (
kPZ28

«2 lnS 11
zN«2/2p2

«2uku21«4uku4
D .

~D2!

The sum in Eq.~D2! may be considered as a sum over t
lattice with spacing«. Then the sum is an integral sum fo
the integral over 2D plane

E
R2

lnS 11
zN«2/2p2

uxu21uxu4 D d2x.

Therefore

1

N
h«S z

2p2
ND

N→`, «→0
——→

2
1

4p2r
E

R2

lnS 11
rz

uxu21uxu4
D d2x.

In the polar coordinates the latter expression reduces
2x(rz)/4pr, with x(z) given by Eq. ~6.9!. So, F«(Nz)
5e22h«(Nz) behaves aseNx(2p2rz)/2pr for largeN and small
«.

Note that the integral~6.9! is elementary and can be foun
exactly. In the interval 0,z,1/4, the functionx(z) has the
form

x~z!5
1

2
A124z ln

12A124z

11A124z
2

1

2
ln z. ~D3!

For z>1/4 functionx(z) is given by

x~z!5A4z21 arctanA4z212
1

2
ln z. ~D4!

Formulas~6.10! follow from Eqs.~D3! and ~D4!.
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